データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

データ・アナリティクス入門

仮説とデータで勝つ戦略

仮説は本質か? WEEK4では、仮説を立てそれをデータで検証する思考法を学びました。仮説は「感覚」ではなく、根拠ある問いとして設定し、目的に合ったデータを収集・分析することが大切であると理解しました。たとえば、あるターゲット層に向けた広告の効果については、申込経路や具体的な単価など、定量的なデータをもとに検証することで、説得力のある改善策を導き出すことが可能だと感じました。 4Pで本質見出す? また、マーケティングの4P(Product、Price、Place、Promotion)の視点から仮説を組み立てることで、問題の本質や見落とされがちな課題が浮かび上がることにも気づかされました。特に、費用対効果を比較する際は、単なる表面的な数字ではなく、単位あたりの価値を基準に判断する重要性を実感しました。 検証と戦略は? この一連の流れ、すなわち仮説の設定、データの収集、検証、そして改善への取り組みは、単なる分析作業に留まらず、意思決定や戦略立案の基盤となることを再認識させてくれました。実際に現場で改善を実行するためには、データを正しく読む目と、仮説を深める思考の両方が必要であると感じました。 販促成功の鍵は? さらに、講師養成講座の販売促進においては、WEEK4で得た知見が「感覚」ではなく根拠ある判断を下すための基盤として活用できると考えます。広報活動における意思決定やターゲットの把握、また販促効果の見直しなど、戦略設計全体に渡り、大いに役立つと感じました。 計画実行は可能か? また、マナー講師養成講座の促進に向けた具体的な行動計画を4週間で立てました。 まず、Week 1では、ターゲット別に仮説を設定し、販促チャネルの効果についても仮説を立て、データ収集の項目を決定しました。 次に、Week 2では、過去数年間の申込者データを整理し、広報媒体ごとの広告実績を収集、さらに簡易なアンケートも実施しました。 Week 3では、ヒストグラムや円グラフなどを用いてデータの可視化を行い、費用対効果の高い媒体を絞り込むと同時に、仮説の正否を検証し、重点ターゲットを確定させました。 最後に、Week 4で、ターゲット別のプロモーションを再設計し、重点媒体への予算を再配分するとともに、効果検証体制を整えることで、改善策を実行に移しました。 この行動計画は実効性が高いと自分なりに評価しています。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

データ・アナリティクス入門

キャンペーン成功の秘密、数字から

施策の視点は何? まず、Product、Price、Place、Promotionの4つの視点で施策を考察することで、学生における時間帯、価格、訴求チャネルのミスマッチという論点が整理しやすくなります。この手法は、自部門での施策レビューでも有効に活用されています。 広告評価はどう? 次に、広告メディアの選定では、「費用 ÷ 表示回数」という単純な指標を用いて、CPM換算で最適な媒体を選びました。これにより、感覚ではなくデータに基づいて判断する重要性を再確認することができました。 離脱原因は何? また、SNS広告管理画面の年齢属性データやUTM付きの流入計測、学内アンケートなど複数の手法を組み合わせることで、認知から興味、そして来校までの各段階で、どのタイミングで学生が離脱しているのかを具体的に特定できる仕組みが整えられています。 各要素のギャップは? 新規キャンペーンを企画する際には、Product(訴求内容)、Price(学割の有無)、Place(曜日・時間帯)、Promotion(SNSや学内媒体)の4象限マトリクスを必ず作成し、意思決定会議で各要素間のギャップを洗い出すルーチンを実施しています。 ファネルの進捗は? さらに、UTMパラメータを用いて大学生セグメントの流入を追跡し、表示、クリック、資料請求、来校の各ファネル段階での歩留まりを計測しています。歩留まりが低い段階に絞ってクリエイティブのABテストを回すことで、改善に必要なリソースを効率的に投入しています。 損益突破の条件は? また、価格施策においては、固定費と変動費の合計を目標生徒数で割るという式を参考に、学割導入によって必要な生徒数がどれだけ増加すれば損益分岐点を超えるかをシミュレーションしました。テスト導入後は、割引適用者のライフタイムバリュー(LTV)を計測し、キャンペーンの継続を判断しています。 スケジュールは如何? 施策の実施スケジュールとしては、初月にKPI分布の可視化テンプレート構築、2月目に要因分解ダッシュボードとアラート実装、3月目に大学生向けSNS広告のABテスト、4月目に学割と夜間枠の検証、5月目に成果共有会を開催し、6月目に効果を総括して次期OKRを設定するという計画です。これら全てを半年以内で実施する予定です。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

アカウンティング入門

数字が築く信頼と説明の力

会計は何を伝える? Week1の学びの中で、最も印象に残ったのは、アカウンティングが単に数字を扱うだけでなく、説明責任を果たすための手段であるという点でした。財務報告は、顧客や投資家にビジネスの実態や判断理由を伝え、信頼を得るプロセスであると実感しました。数字の良し悪しを評価するだけではなく、その背景や意味を詳しく説明することが信頼構築につながると気づかされました。 数字の背景は? たとえば、売上増加が一時的なキャンペーンによるものか、リピート顧客の増加によるものかで意味合いは大きく異なります。こうした背景を説明することが、単に数字で語る以上に重要だと感じました。 業務効率化の目的は? 現在進行中の経理業務効率化プロジェクトでは、なぜその処理が必要なのかを明確にするため、処理フローを図解し、関係者ごとの視点で要点を整理した説明資料を作成しています。今後は、売上推移のグラフに要因分析のコメントを加えたり、プロセス毎の処理件数を可視化したりすることで、財務データとその意味をまとめ、現場の改善活動に活かしていく予定です。 説明責任の価値は? この考え方は、経理業務の効率化プロジェクトや月次報告資料の作成、説明の場面で特に役立つと感じています。社内の営業部門やマネジメント層に対して、業務成果や処理の背景をしっかりと説明する際にも、アカウンティングの「説明責任」の視点を活用したいと思います。 資金繰りの背景は? また、「なぜこのフローが必要か」や「なぜこの数値になったか」を、単なる報告に留まらず、損益計算書や貸借対照表の視点と結びつけて説明することで、たとえば特定の対応がどのように資金繰りに影響を与えたかといった具体的な効果を伝えられるようになると考えています。 処理フローの必要性は? そのため、まずは処理フローと財務数値との関連性を整理し、簡単な図や表で関係者に分かりやすく共有することが重要です。さらに、毎月の報告書には、数値の背景にあるビジネスの動きを具体的にコメントとして添えることを心がけ、数字の「正しさ」だけでなく「意味や背景」を丁寧に説明する姿勢を継続していきたいと思います。 Week1は何感じた? Week1の内容に関しては、特に追加する事項はありません。

クリティカルシンキング入門

グラフが語る学びの転換点

グラフ活用は効果的? データを加工する際、グラフの持つ威力を改めて実感しました。単なる表では見えにくかった傾向が、グラフにするだけで一目で把握できるということが分かりました。特に、強調すべき大きな傾向に矢印などを加えて示すと、視覚的なインパクトが増し、情報に説得力が出ると感じました。 切り分けのコツは? また、どのように切り分ければ傾向が明確になるのかは、実際に手を動かして試行錯誤することでしか掴めないことが分かりました。年代別やキリの良い数値で区切るだけでなく、定性的な仮説を立てながらいろいろな切り口を試してみることが、より正確な情報整理につながると実感しました。 複数角度で見る? 数値そのものだけでなく、率を用いて見ることも非常に重要です。一つの切り口に頼るのではなく、複数の角度からデータを分析することで、より解像度の高い情報が得られる可能性が広がると考えています。 分析が楽しいの? 以前は、数字やデータ分析が苦手だと感じ、グラフ化するのにも抵抗がありました。しかし、実際にグラフにすることで情報が整理され、意外にも分析が面白いと気付くことができました。面倒な作業と感じていた部分が、より良いアウトプットへとつながる大切なプロセスだと認識できたのは大きな収穫です。 資料作成は説得力? 顧客への業務報告や来年度の予算提案の際に、グラフ化したデータを根拠として示すことで、自社の貢献度や改善点を明確に伝えることができます。視覚的な効果や率を意識することで、顧客の意思決定をサポートする説得力ある資料作成に役立っています。 目的は伝わる? これまで、前例をそのまま踏襲するだけで、資料作成自体が目的化してしまい、伝えたい内容が不明瞭になっていた部分がありました。今回、グラフをどのように切り出し、どのように見せるのかと改めて考え直すことで、伝えるべき本来の目的に立ち返る必要性を感じました。 再確認の方法は? 今週は、過去に提出した業務報告書を振り返り、各ページで何を伝えたいのかを再考する作業を行う予定です。皆さんも、資料作成が目的化してしまい、本来の伝えたいメッセージが薄れてしまう経験はありませんか? もしあれば、どのようにして本来の目的を再確認していますか。

「数字 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right