データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

クリティカルシンキング入門

資料作成のプロが語る効率向上のコツ

資料作成の工夫は何を意識する? 視覚(資料)を使って相手の理解を促進させるには、読み手の立場に立ち、字体やフォント、色や全体のレイアウトなど細部まで考えることが重要です。また、リード文やグラフを用いる際はシンプルかつ強調できるように情報量の足し算と引き算を意識し、内容により適切なグラフを使用することが求められます。 学びを業務にどう活かす? 社外取引先向けの資料を作成する機会が比較的多いため、次回作成時からこの学びを活用したいと思います。また、社内資料の作成においても社外向けのメリハリを意識することで、今回の学びを自身の業務で活用できるよう訓練したいです。 新しい習慣をどう築く? これまでは慣れや自分の感覚、作成に充てる時間によって主観的に資料を作成していました。しかし、今後は読み手の読みやすさや印象を意識し、作成の過程でチェックを行いたいと思います。さらに、作成前に全体を考える時間を確保し、修正の時間も考慮することで効率も良くなると思いますので、そういった新しい習慣を作りたいです。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

アカウンティング入門

アカウンティングで未来を読む力を培う

利益理解で何が見える? アカウンティングを学ぶことは、会社の成績表を正しく読む力を養うことだと理解しました。ビジネスは基本的に利益が出ているかが重要です。その利益がどのように構成されているのかを知ることで、自社のビジネス構造を理解することができ、非常に重要だと感じました。 数字から戦略は? 私は、自部門のサポートメンテナンス費用による収入、人件費、そして利益率を正確に把握するために、この知識を活用したいと思っています。また、解釈した数字を基に、人材採用戦略の策定に役立てたいと考えています。さらに、日本のみならず、海外のサポート部門とのベンチマークを行い、課題となり得る部分の把握とその対策についても検討したいと考えています。 数字をどう解析する? もし、サポート内のファイナンス担当から実際の数字を入手できるのであれば、それを自分で解析してみたいと思います。また、会社の四半期ごとの決算書も同様に自分で解析し、会社の状態を推測しながら、今後の判断材料として活用したいと考えています。

デザイン思考入門

共感×試作で拓く観光新境地

デザイン思考で何が変わる? 新規事業企画において、デザイン思考を意識して金融業界から観光事業を生み出す取り組みを行いました。具体的なステップとしては、まず①共感の段階で地域の観光資源の発掘やブラッシュアップに着目し、②課題設定では事業規模や投入するリソース、取り組みの意義を整理しました。さらに③発想の段階ではブレーンストーミングを通して同業他社や異業種事例を参考にアイデアを広げ、④試作では実際の観光資源を活用してツアーとして組み立て、インバウンド客の取り込みを狙った高価格帯プランも検討しました。 どのターゲットを設定? また、観光事業においては国内客か外国客、初回客かリピーターかなど、ターゲットによって施策が大きく変わるため、提供したいサービスの顧客を具体的に設定する重要性を感じました。これらの気づきは上司からのフィードバックを通じて得られ、デザイン思考は個人作業ではなく、チームで概念を共有し、必要ならインタビューやフィードバックを取り入れながら進めるものだと再認識することができました。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

データ・アナリティクス入門

データで広がる学びの可能性

仮説はどう広がる? フレームワークの視点を活用することで、仮説の幅を広げることができます。既存のデータを活用する方法と、新たにアンケートなどでデータを収集する方法の二つがあります。まずは自社や公表されているデータから問題を絞り込み、次に知りたいことを軸に必要なデータを集める流れが重要です。 急変時に何を検証? あるデータが急に増減した場合、時間をかける前にまず仮説を立て、その仮説を裏付けるためにどのデータが必要かを検討しながら分析を開始することが求められます。ひとつのデータに固執せず、同時期の他のデータも合わせて確認することで、多角的な視点が得られるでしょう。 データ整理はどう進む? 業界では多くの公表データが存在しますが、それぞれのデータに何が含まれているのかを把握できていないケースがしばしばあります。まずは各データの整理を行い、その上で社内に共有し、他部署とも同じ視点で把握するよう努めます。直感や経験に頼るだけでなく、データで検証するという姿勢を社内に広めていくことが大切です。

データ・アナリティクス入門

問題解決のプロセス細分化とA/Bテスト活用の魅力

問題解決の手法を学ぶ 今週は以下のことが学べました。 問題の原因を明らかにする方法として、プロセスを細分化する手法があります。解決策を検討する際には、複数の選択肢を洗い出し、それらの根拠を基に絞り込むことが重要です。また、A/Bテストについても学びました。これはシンプルで運用判断がしやすく、少ないリスクで改善ができるため、さまざまな場面で使用できると感じました。 A/Bテスト活用の予定 A/Bテストは10月に予定している実証実験でも活用する予定です。正しい検証結果を得るために、目的と仮説の明確化をチームで議論しようと思います。また、現状の問題を特定し、「what, where, why, how」の要素に分解して再考する計画です。 実証実験でのデータ取得設計 さらに、実証実験でどのようなデータを取得すべきかをもう一度考え直します。何が分かれば次のフェーズに進めるのかを踏まえた上で、データ取得設計を行います。アンケート設計も、目的を明確にして得たい情報が確実に得られるように構築します。

戦略思考入門

無駄を省く戦略のはじめかた

戦略思考の基本は? 戦略思考とは、適切なゴール設定を行い、そのゴールに向かう最短最速の道筋を設計することだと捉えました。むやみがむしゃらに取り組むのではなく、無駄を省きながら内部と外部の両面から深く広い視点で物事を捉える必要があると感じています。 分析視点は変わる? また、自社の今後の戦略立案において、今回学んだフレームワークを積極的に活用していきたいと考えています。今までの3C分析では市場、他社、自社に焦点を当てていましたが、今回のコースで市場だけでなく顧客や、直接的なサービス競合以外の他社にも目を向けるべきだという学びを得ました。この気づきをもとに、分析を再度見直し、整理していく予定です。 PDCA活用の方法は? 具体的には、分析結果をまとめた資料を上司に提出し、フィードバックを得た上で修正を加え、再度提出するというPDCAサイクルを徹底して回していきたいと考えています。今回の学びは非常に多く、インプットだけでなく、アウトプットを重ねることで着実に理解を深めていきたいと思います。

データ・アナリティクス入門

分析の楽しさ!戦略と挑戦の日々

各要素をどう捉える? 分析の肝は、漏れなくダブりなく各要素を洗い出し、比較することで見えてくる事象から仮説を立てる楽しさにあると実感しました。一方で、効率的で分かりやすいツールの習得がまだ十分でないため、その点を今後解消していきたいと考えています。 売上拡大はどう実現? まず、売上拡大のための各種施策の打ち出しが必要です。また、お客様の行動を分析することでアプローチ方法の見直しが求められます。現状の自社商品の強みや弱みを把握し、適正な人員配置や営業行動計画、業務プロセスの見直しを実施するためには、関係各所のリーダーと連携することが重要です。 育成と戦略の見直しは? さらに、スタッフ育成においては、早期に戦力となっていただくための教育制度の見直しを進め、会社の方針や営業目標を浸透させる努力が必要です。加えて、マーケティング施策の見直しでは、離脱要因を特定し改善を図るとともに、他社の事例研究も欠かせません。最後に、営業戦略の再検討を行い、何が効果的であるのかを見直すことが求められます。

クリティカルシンキング入門

学びの扉を開く受講生の声

正しい問いとは何? 物事を正しく捉えるためには、まず急いで判断せず「問いは何か?」を常に頭の片隅に置き、問い続けることが重要です。その上で、偏りなくもれなく、ダブりなくイシューを考え、常に自分を俯瞰して客観的に見る視点を持つ必要があります。さらに、正しい言葉を用い理由と根拠を明らかにして説明することが求められます。 説明で伝えるコツは? この姿勢は、人に物事を説明して納得してもらう場面や、新しいルールを制定する際に特に有用です。例えば、資料の説明や方針の提示、また相手の話を整理してアドバイスや指示を明確に認識する際にも役立ちます。 課題整理のポイントは? また、イシューリストを作成し、常に頭の隅で課題について考え、すぐに判断せず問題点を捉える習慣を持つことが大切です。正しい日本語を学び、主語と述語がシンプルに構成される文章に触れることで、言葉のインプットと蓄積も意識しましょう。さらに、他者の話を聞く際には「問いは何か?」を引き出す質問を行い、内容を整理するよう努めています。

「行い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right