戦略思考入門

初めてのバリューチェーン体験で広がる視野

どう視野を広げる? 経営者の視野を持ち、大局的に物事を見る姿勢や、ジレンマを過度に恐れず他者の意見をしっかり聴くことが重要だと感じました。これらの点は、自分自身の苦手領域でもあり、改善に向けた具体的なアクションが必要だと認識しています。 どの分析を活用する? フレームワークとしては、3C分析とSWOT分析はこれまでの金融業界での経験から馴染みがありましたが、バリューチェーン分析は今回初めて学びました。担当エリアに製紙業界のお客様が多い中、不景気=収益性低下という認識が根強い現状に対して、各社の強みや弱みを整理するために、この分析手法が非常に有効であると感じています。 顧客実情は分かる? また、法人営業として様々な業種の経営者と接する中、実は企業のバリューチェーンについては十分理解されていないケースが多いと実感しています。バリューチェーン分析に慣れることで、顧客の実情や背景をより深く把握し、3CやSWOT分析を組み合わせた提案が可能になると期待しています。これにより、マクロな経済環境も踏まえたより適切なアプローチができると考えています。 実践に向けてどう? 今後は、主要な顧客のバリューチェーンをまず徹底的に分析し、競合他社との比較を行います。その上で、SWOT分析および3C分析を通じて、各社の強みや弱みを整理し、経営者との面談でフィードバックを受けることで、更なる学びと実践に活かしていきたいと思います。

データ・アナリティクス入門

分解して発見!論理の先へ

講義で何を学んだ? 今週はライブクラスに参加できなかったため、動画で講義を視聴しました。講義では、データ分析を進めるにあたって、解決すべき問題を明確にすることの重要性が説かれていました。また、売上低下の原因を複数の視点から分解し、掘り下げた情報の中から解決につながる要素を見出す手法について学びました。 比較で見る視点は? 具体的には、客層やばらつき、年齢層、客単価といった各要素を前年のデータと比較することで、売上低下の原因を浮かび上がらせる方法が紹介されました。比較の過程では、どのグラフを用いて示すのが適切かは一つに限らず、さまざまな手法が存在する点も興味深かったです。 偏りを防ぐには? また、自分の考えに偏りがかからないよう、誰にでも納得してもらえる解決策を導くためには、内容をしっかり分解しデータ分析することが不可欠であると再認識しました。これまでの経験や業種に頼らない、異なるアプローチや視点で物事を見る意識を持つことの大切さを改めて感じました。 論理的思考は? データ分析の学習を通じて、より論理的な思考と仮説検証の実践が重要であることを学びました。情報整理やパターンの発見、適切な結論の導出には、さまざまなフレームワークや手法の活用が役立つと感じ、これを習慣化することが今後の課題と考えています。また、不得意なエクセルでのグラフ作成についても、試行錯誤を重ねながらスキル向上に努めていきたいと思います。

データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

データ・アナリティクス入門

仮説とデータで切り開く未来

データ分析の流れはどうなる? 講座全体を通して、データ分析の流れを構築する大切さを改めて認識しました。どのような状況から仮説を立て、どのデータセットを用いて表現するかといったストーリーを意識することができました。各種フレームワークや分析、表現の手法はあくまでメソッドであり、講座前に自学していたため、今回はそれらの手法をいかに組み合わせてゴールに近づくかが重要だと感じています。 会社での分析はどう進む? 現在、新しい会社で財務会計を担当しており、上記の資料やデータを集めながら一工夫加えた分析と仮説を展開する予定です。具体的な運用はまだ未定ではありますが、原価や経費、売上のデータ分析にも今後取り組んでいきたいと考えています。 学びの道はどこへ? 以前から学びたいと思っていた分野ですので、今後の学びの方向性として以下の点を進めていくつもりです。まず、統計学をきちんと学び上げ、社会人向けの良書や統計検定の復習を通じて知識の向上を目指します。また、今回の講座で学んだマーケティングや他の考え方とデータ分析を組み合わせるため、以前かじったマーケティングについても更に深掘りしたいと思います。 ITスキルはどう磨く? さらに、Python、SQL、データベース構築、クラウド技術など、データ分析に必要なIT分野の知識も広げる計画です。資格検定の受験も視野に入れながら、体系的に学んでいきたいと思います。

データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

リーダーシップ・キャリアビジョン入門

指示から支援へ!リーダーの挑戦

二軸の考えはなぜ有効? 業績への関心と人間への関心という二軸で人のタイプを捉える考え方は、チームマネジメントにおいて非常に参考になりました。また、リーダーには四つのタイプが存在するとされ、環境要因(どのような仕事か)と部下要因(どのような相手か)を踏まえて、どのアプローチが適切かを判断することが大切だと実感しました。自組織のメンバーをこの二軸でプロットし、現状の業務における環境と部下の特性を言語化することで、より具体的なリーダーシップのあり方を考えられるようになりました。 指示型と支援型の違いは? 特に、指示型のリーダースタイルでアプローチしながら、徐々に支援型へと移行するプロセスが理想ではあるものの、実際に新入社員などを対象に行った場合、主体的に行動する人と受け身のままの人に分かれる傾向にあることに直面しました。後者のケースに対して決してあきらめることなく、様々な工夫を試みたいと考えていますが、その過程で心が折れそうになることもしばしばです。 規模で変わる管理のコツは? また、2~3名のチームであれば部下の特性を把握しやすいと感じている一方で、数十名規模のチームを率いる場合には、全体の把握やアプローチの見直しが必要になると考えています。このような場合、環境要因や部下要因をどのように整理し、最適なリーダーシップスタイルを選択しているのか、他の方々のご意見や経験をぜひお聞かせいただければと思います。

戦略思考入門

戦略思考で拓く新たな自分

目標と現状の接点は何? 戦略的思考とは、まず目標と現状の地点を明確に設定し、その間を最短距離で結んでいくことだと学びました。普段、プロジェクトを進める際にはクライアントからの要望に応じて、発生するタスクをいくつか洗い出し、その中でも特に時間と関係者が必要な作業をクリティカルパスとして最優先に取り組むようにしています。 実行と省略の理由は? また、戦略とは何を実行するかを選ぶだけでなく、何を実行しないかを決定することでもあると感じました。クライアントのリクエストを中心に作業を進め、要望がない部分は最低限のアウトプットを目標にする方法は、事業戦略の現場でも重要な考え方だと思います。不要な検討事項をなぜ省くのかを論理的に整理し、説明できることも求められる点に納得しています。 日常への戦略的活用はどう? さらに、日常の様々な場面でも戦略的思考は活用されています。現在、転職活動中という身で、必要な資格取得やスキルの習得に向けて戦略的なアプローチを実践していると感じます。また、面接に備えてこれまでの業務経験や実績、強みを論理的に整理し、わかりやすく説明できるよう努めています。 整理された思考はどう生かす? これまで無意識に行っていた思考を俯瞰し、論理ツリーなどの手法を取り入れて整理することで、今後の業務においてより幅広く深い視点を持つ戦略的な考え方を身につけられるよう、本受講を進めていきたいと考えています。

データ・アナリティクス入門

数字が繋ぐ学びのストーリー

分析の目的は? 分析について学んだ点としては、まず分析の目的を明確にすることの大切さを実感しました。分析は単なる数字の羅列ではなく、比較を通して意味を見出し、意思決定に役立つ結論を導き出すことが求められます。また、手元にないデータからも推測を行うことで、新たな洞察が得られる場合があること(例として、戦闘機の事例)が印象に残りました。 仕事にどう生かす? この学びを仕事に活かすため、分析に取り組む前には「なぜ分析を行うのか(Why)」、「その目的を達成するために何を分析すべきか(What)」、「どのように比較検討するのか(How)」を明確に文書化することが必要だと考えます。例えば、進行中の消費者アンケート調査では、調査の目的、分析対象、比較対象と方法を整理することが求められます。また、広告効果測定においては、分析対象が広告以外の条件とどのように整合性をもって比較できるか検討することも重要です。 報告はどう伝える? 報告時には、まずデータそのものの事実を示し、次にそこから読み取れる解釈を伝え、最終的に結論としてまとめるという流れが効果的です。一方で、営業提案用の資料作成の場面では、自社に有利な解釈ができるようデータの切り取り方に工夫が求められる状況もあります。私は分析担当として、あくまで客観的でフラットな視点からデータを伝えることを心がけているため、その点について皆さまのご意見を頂ければと思います。

アカウンティング入門

B/Sで発見!経営の意外な真実

P/LとB/Sの関係は? P/Lで示される当期純利益は、B/Sの純資産に組み入れられる点が印象的でした。B/Sでは、左側に資産―つまりお金の使い道が示され、右側に負債と純資産―お金の調達方法が表されています。負債は借り入れにより資金を集めたと考えられるため、この関係性から企業の資金調達や運用の実態を読み取ることができます。 流動と固定の意味は? また、資産や負債は「流動」と「固定」に分けられ、1年以内に現金化できるものや支払いが済むものが流動に分類されます。特に、売掛金や買掛金はこの流動性の代表例といえ、各項目の期間内の動きを理解することで、企業の短期的な経営状態を把握する上で重要です。 負債の大きさは何を示す? さらに、資産と比較した負債の大きさを通じて、企業の健全性が評価されることにも驚かされました。しかしながら、各企業のビジネスモデルによって特徴は異なるため、一概に比較するのが難しいという点も学びの一つです。 どう学びを実感する? この学びを生かして、まずはさまざまな企業のB/Sを観察し、それぞれのビジネスモデルの特徴を掴むことを目指しています。さらに、事業を立ち上げる際には、こうした知識がビジネスモデルの構築の参考になると感じました。加えて、公開情報から多くのB/S事例を検討し、資産や負債が全体に占める割合についてざっくりと把握することで、経営分析のスキルを養いたいと思います。

クリティカルシンキング入門

問いと内省で開く成長の扉

問いの出発点は? まず最初に、常に問いを立てる姿勢が大切だと感じています。抽象的な問いをそのまま受け止めず、具体的な内容に落とし込むためには、出発点そのものを疑うことが必要です。自分が今何に答えようとしているのか、常に意識することで、無駄な情報に振り回されるのを防げると考えます。 学びは実践できた? 講義を受けたときは学んだ気になっていた部分も、実際に実践してみると忘れてしまっていることが多いと痛感しています。そこで、反復して復習し、学びを確実なものにする努力が必要だと感じました。 問いと仮説は合ってる? また、データ分析や示唆出しの骨子を作成するときは、まず何に答えようとしているのか、その問いと仮説を明確に立てることがポイントです。資料作成に熱中するあまり、本来の目的から逸れてしまわないよう、問いに立ち返ることが効果的だと思います。 フィードバックは活かせる? さらに、月次の振り返り発表では、他のメンバーの資料を事前に読み込み、フィードバックの質を上げることに努めています。普段、上位の方々との会話では迎合しやすい自分を見直し、しっかりと自分でイシューを考える意識を持つようになりました。 内省で成長中? 毎日終業前の15分間は内省の時間として、今日学んだことが実践できたかを必ず振り返るようにしています。この内省を通して、小さな気づきを積み重ね、常に自己成長を意識するように努めています。

リーダーシップ・キャリアビジョン入門

ふたつの関心軸で変わるコミュニケーション

マネジリアルグリッドとは? マネジリアルグリッドという概念について初めて知りました。「人間への関心」と「業績への関心」の2つの軸に分けて考えると、確かに理解しやすいと思います。コミュニケーションがうまくいかないと感じるときには、この関心の軸が異なっているのかもしれないと感じました。業務中はどうしても「業績への関心」に比重が大きく傾きがちかもしれませんが、私自身は「人間への関心」に寄っていると思います。両軸とも大切にしたいと感じています。 MBOにおける環境要因とは? 次に、環境要因と適合要因の視点から、直近の目標設定(MBO)でメンバーへの支援の準備を進めたいと思います。対象者の経験や知識スキルの把握、そして組織やチームの方向性や状況を整理して、その上で主に支援型のアプローチを考えていますが、達成志向型のアクションも忘れずに取り入れていきたいです。 タレントマネジメントの活用法は? 具体的なアクションとしては、まずはタレントマネジメントを活用して対象者の情報を把握します。スキルについてはある程度把握できると思われます。また、リーダー陣の会議を通して、組織の課題や方向性を理解することが重要です。組織再編があったばかりなので、この点が特に重要です。そして、定期的な1on1の機会(現在は月1回)を利用して、対象者のバックグラウンドを知り、キャリアプランを描きつつ、明確なゴール設定を目指したいと考えています。

「考え × 思い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right