データ・アナリティクス入門

A/Bテストで広告効果を最大化する方法

論理的思考の極意は? 「What」「Where」「Why」「How」の視点で物事を考える重要性を学びました。実践演習を通じて、A/Bテストを活用し、ターゲット層をグループ化して効果のあるかどうかを仮説を立てて検証するプロセスが重要であることを実感しました。また、コストや意思疎通、スピードなどを考慮して、外注か自社のデザイナーに任せるのか、またはAIに広告の表示を任せるかを判断する必要性にも気づきました。 広告の効果は見えてる? 自社でもYouTuberとのコラボ商品を展開していますが、それが実際にコンバージョンにつながっているかを検証することの重要性を感じました。ソーシャルメディアのユーザーごとの年齢や趣味を考慮しないと、ターゲット層と商品の間に乖離が生じ、購入につながらない可能性があると考え、A/Bテストを用いて広告の比較検討を行うことが非常に重要であると感じました。 クリック数は信頼できる? 普段何気なく見ているYouTubeチャンネルやInstagramなどのプラットフォームに表示されている広告が実際にクリックされる広告なのかを検証し、自社の広告もそのように費用対効果を考慮し、スピードやコスト、意思疎通などを考えて表示することを実践したいと思います。また、自社はテレビドラマとのコラボ商品が多いため、テレビの視聴率や視聴者に対して効果的なコンバージョンへの検証を進めていきたいです。

クリティカルシンキング入門

データ分析で得る新たな視点と知見

分解の効果は何? データを分解することで、より多くの知見を得られることを実感しました。特に、ある特徴が一つの切り口で現れた際に、それだけで答えを決めつけると他の観点から見ると誤りであることがあることに新鮮さを覚えました。答えが見つかったように見えても、それはあくまで仮説であり、しっかりと検証することが重要だと感じました。 現状をどう把握する? ITシステム品質保証チームの今後の戦略を立てるにあたり、まず現状を把握したいと思います。そのために、システムの品質評価を分解し、現状に対する課題を見つけ、知見を得たいと考えています。具体的には、ユーザーが5段階で評価したデータの平均値であるNPS平均を分解していきます。 どの切り口が有効? まず、MECEを意識しながら様々な切り口を考えます。層別分解としては、ユーザーの属性別や単価別を検討します。変数分解としては、評価の平均は合計値を評価数で割ることで得られるため、5段階各評価ごとの合計をグラフ化します。また、評価数の分布や1ユーザーあたりの評価回数の層を作り、さらに分解して考察します。プロセス分解としては、ユーザーが新規登録してからサービスを利用し終えるまでの流れをプロセスに分けて、各段階での評価がどの程度であるかを分析していきます。 検証の重要性は? 以上のように、さまざまな観点から分解することで知見を得ることを目指します。

データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

データ・アナリティクス入門

仮説で紡ぐブランドの未来

変化にどう対応する? ビジネス環境は刻々と変化しており、すべての情報をあらかじめ把握することは難しくなっています。そのため、仮説を立てながら方向性を見出し、PDCAサイクルのスピード感を向上させることが不可欠だと感じています。仮説があることで、リソースを効果的に活用し、時間や費用の無駄遣いを防ぐことができると実感しています。 ブランドの価値はどう見る? 特に新規事業で新しいブランドを立ち上げる際は、単に機能面の優位性だけではなく、ブランドのストーリーや価値が重要になると考えています。そこで、ターゲット層に確実に響く戦略を構築するため、仮説検証を繰り返し行っています。 仮説検証は効果的? まずは以下の仮説を設定しました。 ① ターゲット層は単に高価格だけでなく、ブランドのストーリーに価値を見出す。 ② 既存の高級製品と比べ、性能面での優位性を示すことで購買意欲が高まる。 これらの仮説を検証するため、ユーザーへのインタビュー、限定販売での反応テスト、SNSやマーケットでのフィードバック収集を実施しました。もし仮説が誤っていた場合には、その原因を徹底的に分析し、新たな仮説を立て直しています。 このようなプロセスを通じて、ターゲットにしっかりと刺さる戦略を練り上げ、新ブランドの価値を最大限に引き出すことを目指しています。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

デザイン思考入門

失敗も踏み台に!シンプル開発の現場

プロトタイピングって何? プロトタイピングでは、①目的を明確にする、②適切な要求を抽出する、③適切な時間を投入するという点を学びました。大学の授業は1科目が15回で構成されているため、毎回がプロトタイピングの検証の繰り返しといえます。大幅な修正を毎回行うと、逆に学生の混乱を招く恐れがありますが、これまで以上に学生の反応に敏感になり、改善を重ねられると感じました。 なぜ凝りすぎる? プロトタイプの作成過程では、どうしても機能を増やしたり、完成品に近づけたいという衝動に駆られます。しかし、ユーザーからフィードバックを得るという本来の目的を考えると、あまり凝りすぎないことが大切だと思いました。実際、下手な漫画を用いたところ、その下手さが逆に興味を引き、フィードバックを得る結果となった経験があります。講座で紹介されていたように、本質的な機能に絞り、“Simple is best”の姿勢で臨むことが重要だと感じます。 本音を出す環境は? また、プロトタイプによる検証は、自分のアイデアが外部の批判にさらされるという意味でも、デザイン思考の醍醐味を味わえるプロセスだと思います。ただし、場合によっては意見を控えるユーザーも存在するため、誰もが本音で意見を言える環境作りが必要だと強く感じました。

デザイン思考入門

言語化で磨かれる提案の極意

課題を明確にできた? IRコンサルティング業務では、これまでお客様の課題を明確な言葉で定義していなかったため、今回学んだ手法を通じて、お客様の状況や課題を整理できたと感じています。また、カスタマージャーニーはBtoB事業においても十分に活用できると実感しており、早速試してみたいと思います。 実践はどう進む? 実践については、4週目以降に取り組む予定です。お客様の課題を言語化することで、認識のずれが減少し、提案の精度が向上すると考えています。同時に、BtoBにカスタマージャーニーを適用することで、意思決定プロセスが可視化され、より効果的なコンサルティングが期待できると感じました。 分析法は何が鍵? また、以下の点にも留意しながら進めます。まず、定性分析は仮説の立案を目的とし、定量分析はその仮説の検証を目的とします。定性分析では、コーディングによってデータを1次コードから3次コードへと分類し、体系的に整理します。さらに、ユーザーの暗黙知を把握するためには観察を、形式知を引き出すためにはインタビューを実施し、それぞれを適切に使い分けることが重要です。最後に、ペルソナを具体的に設定し、カスタマージャーニーを描くことで、実践的な分析を目指していきます。

デザイン思考入門

小さな失敗が大きな変革に

どうしてデザイン思考? ライブ授業の録画を視聴して感じたのは、従来のロジカルシンキングだけでは達成し得なかったイノベーションを、デザイン思考で実現できるのではないかという期待です。特に、ユーザーが抱える潜在的な課題を見える化することで、本質的な課題が明確になるという点に大きな意義を感じました。 どうして顧客不在? また、結果を出せない組織には「顧客(ユーザー)不在」という共通点があると感じています。私の職場では、新しい企画を提案すると「予算は?」「担当は誰が?」、「上層部が賛同しない」といった否定的な意見が次々と出され、そのために改革が進んでいない現状です。厳しい状況下で経営層を巻き込むのは難しいですが、自らの業務の中で「ユーザーは誰か」「どのような喜びを提供できるか」「どんな困りごとがあるのか」を常に意識することが、デザイン思考を活かす第一歩だと考えています。 プロトタイプの効果は? 当面は、自分の担当業務の範囲内でデザイン思考のプロセスを実践していこうと思います。特に、プロトタイプを用いた検証プロセスは、試行錯誤を通じて小さな失敗から学ぶ大きな醍醐味だと感じており、これを繰り返すことで改善を図っていく所存です。

データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

デザイン思考入門

共感と洞察で切り拓く営業の極意

共感ってどう大切? 共感の大切さが一番印象に残りました。ユーザーの動作や発言に注目し、彼らの立場から本質的な課題を捉える観察力が必要だと感じました。また、誰がどのような状況でどんな課題に直面しているのかを明確にし、仮説に基づいた解決策を提供することの重要性も実感しました。 営業はどう変わる? BtoB向けの営業プロセスでは、自社商品やサービスの提供に留まらず、まずユーザーの課題を把握することが基本です。ユーザーの課題を観察し、仮説を立てながら顧客との検証を繰り返すことで、まだ気づかれていない本質的な問題にも気付くことができ、その結果、より効果的な営業活動(インサイト営業)につなげることができると感じました。 課題共有は必要? また、商談前に課題を共有する活動の重要性も印象に残りました。普段の業務においては、顧客サーベイやチームでのブレインストーミングを通じ、ユーザー視点の仮説を多々収集しています。その後、実際の検証結果をもとに、各メンバーが顧客との面談時の特性や仮説の内容を共有し、より質の高い対応策の検討へとつなげています。

「ユーザー × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right