クリティカルシンキング入門

データ分析で見つけた新たな視点と発見

データ加工の真実は? データの加工によって、見えてくる事実や印象は大きく変わるものです。「数字は嘘をつかないが、詐欺師は数字を使う」との言葉がありますが、まさにその意味を実感しました。情報は、どのように分解するかによって、判明する内容に差が出ます。ただし、最初から適切な区分けを定義することは難しく、仮説に基づいた検討になりがちです。そのため、区分けをできるだけ小さな単位で行い、グラフ化や計算によって傾向を見出すという方法が現実的です。 異軸の関係は? 一つの軸で明らかになった事実を他の軸と結びつける際には、それらの軸がどのような関係にあるのかを考慮する必要があります。全く異なる軸同士の場合、それらを組み合わせて四象限にするなどの工夫が求められます。 ログ分析で何が? 私は現在、自社サービスの顧客の利用状況をログで分析し、利用状況に問題がないか確認する工程に取り組んでいます。その結果に基づき、さらにARPU向上を提案しています。このデータ分析には、今回学んだ分解する観点を活用したいと考えています。 新データの可能性は? 先週、新しい利用状況データを取得できたため、来週にその分析を実施する予定です。この新しいデータは、これまでのものよりも詳細で、分析する軸が多岐にわたります。今回学んだ、複数の軸の関連性を考慮した事実抽出の手法が、大いに参考になりそうです。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

クリティカルシンキング入門

正しい問いで切り拓く明日

本質的な問いは? 「イシューの特定」、すなわち「今、何を考えるべきか?」を問うことが、クリティカルシンキングにおいて最も重要であると学びました。問いの立て方が誤っていれば、これまで習得してきたデータの分解や視覚化などの手法も効果を発揮しません。そのため、常に正確な問いを立て、本質的な課題を見失わないよう意識することが大切だと感じています。 背景をどう見る? 管理職として日々様々な課題に直面する中で、表面的な事象だけを捉えて短絡的な対策を講じるのではなく、その背景や状況をしっかりと把握し、正しい問いを立てることを心掛けています。また、メンバーからの質問や相談に対して、イシューが正しく特定されていないと感じた場合は、しっかりと話を聞きながら、彼ら自身が本質的な問いを見出せるようサポートすることを意識しています。 計画に必要なものは? 来年度の事業計画作成にあたっては、まず今年度の振り返りで、良かった点と改善が必要な点を背景やデータの視点から深く掘り下げること、その上で「数値目標(売上や利益)を達成するために何が必要か?」という問いを軸に、今年度の学びを活かしながら来年度の取り組みを策定していきたいと考えています。また、事業計画をメンバーに共有する際には、表面的な数字だけでなく、計画の背景にある課題やそれに基づく理由を十分に伝わるよう工夫して説明していくつもりです。

クリティカルシンキング入門

エクセルで広がる!学びの新発見

エクセルとグラフの効果は? エクセルシートの活用方法について学んだことは、非常に奥が深く、多くの発見がありました。特に、データの見える化をグラフで実現することは非常に参考になりました。また、データ分析で迷ったときには、まずはデータを分解してみることが重要であるという点も、教材を通じて反省しました。後半のMECEに関する学びでは、経営戦略のツールとしての利用に関して、どのステップで役立つのか、構成要素を分解して考える視点が大変有益でした。 分析視点の工夫は? これらの学びを基に、大学の在学生や入学生の分析に活用してみたいと考えています。特に、入試ごとの分析視点が不十分であったため、同僚とともにいくつかの切り口を考え、層別や変数の分解を試みるつもりです。また、プロセスを分解し、ペルソナを設定することで、大学進学を考えた段階から最終的な進路決定に至るまでの過程の分析を試みたいです。 広報と全体の関係は? さらに、「全体を定義する」ということの重要性についても意識が深まりました。これまでは、学生がオープンキャンパスに参加し、その後出願するという単純な流れを考えていましたが、実際には学生が興味を持ち始めるタイミングで、どのように大学の認知度や魅力を伝えるかが重要だと感じました。そのため、進学先を決定するプロセスにおける効果的な広報活動の必要性を強く感じています。

クリティカルシンキング入門

問いの力でビジネスを変える!

正しい問いは何? 正しい問いを立てることの重要性を改めて実感したワークでした。Week1で学んだデータの分解やピラミッドストラクチャーは、適切な問いを立てることができて初めて効果を発揮します。イシューを特定することは、一人では難しく、同僚と共同で行うと論点がずれるリスクもあるため、とても難しいと感じました。しかし、「今解くべき問いは何か」を常に意識しトレーニングを続けていくべきだと考えます。 適切なイシューは何? このスキルは、新規サービスやコンテンツ開発、既存サービスの改良にも応用できそうです。業務や事業における課題は多岐にわたるため、イシューを特定するだけでなく、どのイシューに取り組むべきかを決めることが重要です。より本質的な問いを立てる訓練をしていきたいと思います。また、お客様の声から得られる気づきをイシューに結びつけるインサイトに変える能力も向上させたいです。客観的に分析し、一人の視点に偏らないことを常に意識する必要があります。 新たな切り口はどう? 普段行っている顧客アンケート分析において、従来の方法に固執せず、新たな切り口やグラフの選択を検討したいと考えています。さらに、アンケート項目自体の設計も非常に重要だと感じており、実施に移したいです。また、会議では論点を明確にし、その範囲から逸脱しないように議論することを心掛けていきたいと思います。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

クリティカルシンキング入門

伝わる資料は細部に宿る想い

グラフの意味は何? グラフが持つ一般的な意味について再認識する機会となりました。例えば、縦棒グラフは要素間の比較に、折れ線グラフは変化や経緯を表現する際に効果的です。資料作成においては、グラフの種類だけでなく、配色、配置、フォントなど細部にも意図を込めることができると実感しました。こうした「隅々まで趣向を凝らす」姿勢を持つことで、手間をかける理由―伝えたいという強い思い―が資料に温かみを与え、結果として細かな注意点も自然とクリアできると考えています。 人事資料は分かりやすい? 人事部では、全社向けに発信される資料が多数あるため、誰が読んでも理解しやすく、視覚的に読み込みやすい資料作成の重要性を感じています。特に、人事考課や昇格試験の案内では、体裁の整え方に重きを置き、ナンバリングなどを活用してより簡潔に情報を伝えられるよう工夫していきたいと思います。また、人事から発信する読み物においては、アイキャッチの工夫により従業員のメリットや関心に沿ったデザインを心掛け、興味を引く資料作成を目指します。 数値資料で納得? データを用いた資料作成においては、相手に情報の探索をさせないため、定量的なグラフを活用し、配色やフォントにも意図をもって整えることが重要です。さらに、メッセージとデータの整合性を常に意識しながら、分かりやすく簡潔な資料作りを進めていきます。

クリティカルシンキング入門

数字で拓く!問いの提案術

グラフで何が見える? まず、データ分析においてグラフ化の重要性を再認識しました。グラフにより数値を視覚的に捉えることで、抜け漏れがないかや新たな切り口で分解すべき点に気づくことができます。 仮説をどう活かす? また、仮説を立てた上で分析する手法の意義も感じました。意味のあるデータの切り分けが可能になり、仮説検証のサイクルを回すことで、より納得感のある結論に近づけると実感しています。 問い続ける理由は? さらに、常に問い続ける姿勢が大切であることも学びました。初めに思いついた主張や根拠、データの特徴に飛びつく傾向があったため、十分な納得感を得られなかった経験を踏まえ、問い直すことで提案の精度を高める重要性を認識しました。 IT戦略はどう選ぶ? 今回の学びは、IT戦略においてどの領域へ投資するかを見極めるアプローチに活かせると考えています。企業の意思決定者に対して誰もが納得する提案を行うため、数字を加工・分解して的確に課題を捉えるとともに、問い続けるプロセスで自分の案を磨いていくことが必要だと思いました。 説得力はどう磨く? 実務においても、この学びを実践し習慣化することで、より説得力のある提案を行っていきたいと考えています。加えて、数字を切り分ける際の観点や、MECEなどの枠組みについて、皆さんの意識している切り口を教えていただければ幸いです。

データ・アナリティクス入門

数字で読み解く学びの秘密

原因はどこにある? 原因や要因を明確にする際は、どの点が、何の理由で、どのように影響しているのかといった具体的な結論をイメージすることが大切だと感じます。また、データを多面的に捉え、細かく分解することで思考の幅を広げることも重要です。 数字は何を伝える? さらに、傾向や新たな発見を見出すために徹底的なデータ分析を行い、数字の根拠に基づくストーリーを構築する姿勢が不可欠です。グラフなどのアウトプットのイメージを具体的に持つことも、分析の質を高めるために有効です。 表示形式は整ってる? 一方で、アウトプットのイメージが十分に形成できていないと感じる場面もありました。実際、クライアントから単に羅列されただけのデータを受け取り、分析を進めた結果、見積もりから内諾につながったケースもありました。しかし、分析時に見やすい表示形式にできていたかについては自信を持てず、残している分析の履歴を見ても、納得しきれない部分がありました。 提案はどう構築する? また、クライアントはデータの整理や分析が十分にできず、どうにかしてほしいという要望を抱えていました。そのため、単にデータを読み解くだけでなく、ストーリーや見やすいアウトプットをあらかじめ意識しておく必要があると実感しました。今後は、この講座で学んだ内容を活かし、より説得力のある提案ができるよう心がけたいと思います。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

クリティカルシンキング入門

思考を解き放つ学びの力

思考プロセスは? これまでの講座を振り返る中で、問いを設定し主張を展開する際には、結論とその根拠を明確にし、その根拠に至る思考プロセス—どのような考え方を経たのか—を言語化して、自分の頭の中を可視化することの重要性を再認識しました。 運用はどうすべき? 普段はテキストベースでのコミュニケーションを活用していますが、実際のITインフラエンジニアとしての業務においては、例えばお客様からデータベースのバックアップに関する要望があった場合、どのデータをいつ、どこに保管し、どんな手法で誰がどのようにメンテナンスするのかといった具体的な要素に分解し、お客様が気づいていない部分まで明確にする思考法として応用できると感じました。また、バックアップ範囲そのものについても疑問を持ちながら、先方との課題を詰めていくアプローチが有効だと思います。 論理はどう整える? 物事を考える際には、まず問いの形としてイシューを定義し、それを常に意識・共有する基本的な姿勢が大切です。また、自身の考えが偏らないよう、妥当性のチェックを怠らず、そのプロセスをアウトプットしてフィードバックを受けながら繰り返しトレーニングすることが必要だと実感しました。さらに、MECEやロジックツリー、ピラミッドストラクチャといった論理的思考を整理する手法は、使える場面で積極的に取り入れていきたいと思います。
AIコーチング導線バナー

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right