データ・アナリティクス入門

納得を呼ぶ仮説とデータの魔法

仮説の種類は何? 仮説には「結論の仮説」と「問題解決の仮説」の2種類があると学びました。また、複数の仮説を立てることや、各仮説が網羅的にカバーされているかを確認する点がポイントとして挙げられています。 どんなデータが大切? さらに、分析や資料作成の際には、比較するためのデータ収集を行い、反論を排除する情報にまで踏み込むことが重要です。自分に都合の良いデータだけを集めるのではなく、あらゆる角度から納得感のある結論に導くために、仮説を立証するためのデータ収集と加工を繰り返すプロセスが必要だと感じました。また、報告や資料作成の際には、意識的に反論者の視点を取り入れることで、より説得力のある分析ができるようになると確信しています。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

グラフで何が分かる? 数字データをグラフで視覚化することで、数字が一目で把握できるようになりました。また、比率や年代ごとの切り口でデータを変換することで、新たな視点や発見が得られることを実感しました。さらに、データを分解し、MECEの視点でスライスすることで、そこからストーリーが見えるようになる点も学びました。 業務でどう応用する? 日常業務においては、企業の財務諸表などの比較分析で、単に数値を並べるのではなく、グラフや比率、分解といった方法を取り入れることが大切だと感じています。これにより、販売管理費用の内訳や労働分配率の推移、さらには他社との比較など、多角的な切り口でアウトプットする訓練ができ、分析の深みが増しています。

データ・アナリティクス入門

客観視点とデータで切り拓く未来

どうして客観視が大切? 問題に直面した際、客観的な視点から状況を捉え、問題解決のプロセスに沿って思考することの重要性を強く感じています。経営者として、すべての関係者が納得する意思決定を行うためには、データを活用し、要因や必要な施策の信頼性を定量的に示すことが不可欠です。 論点整理をどう進める? また、コンサルティング業務では、先入観を排し、クライアントのニーズや前提条件を正確に把握した上で論点を整理する必要があります。さらに、主要な論点を中論点や小論点に分解し、検証すべき内容を明確にすることが重要です。問題解決のプロセスに沿って各段階ごとに仮説を立てながら作業を進めることで、解決策の精度を高めることができると考えています。

データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

データ・アナリティクス入門

問題解決に挑むロジックの魔法

基本プロセスは何? 今回の学びは、問題解決の基本プロセスを理解する良い機会となりました。特に「何が」「どこで」「なぜ」「どうする」という一連のステップが欠かせないことを改めて認識し、ロジックツリーを用いた「階層別分解」や「変数分解」の手法についても詳しく学びました。また、MECEという考え方は初めて耳にし、図解により抜け・もれ・ダブりの問題が明瞭に整理される様子から、理解が一層深まりました。 分析で気づいた点は? 実際の業務においては、退職増加に関する分析を進める中で、抜け漏れの存在に気付くことができました。限られたデータの中から問題の全体像を捉えるため、今後は抜けている部分に対して階層分析を実施する予定です。

データ・アナリティクス入門

データを活かす!視覚化テクニック入門

データはどう活かす? データは単にビジュアル化すれば良いわけではなく、用途に応じて適切に使わなければなりません。また、単にグラフに表現された情報だけでなく、その背後や空白の部分からも情報を見つけ出すことができます。さらに、TPOに合わせて代表値の取り方や計算方法が変わりますが、その結果だけで仮説を導き出すことはできません。 難業務の可視化方法は? 現状、私が携わっている業務ではデータを利用したり、数値化・グラフ化する機会があまりないため、自分の業務に適用するのが非常に難しいと感じています。反対に、数値化やグラフ化が難しい業務をどのように工夫して視覚的に示すことができるのか、そうした方法について学びたいと考えています。

マーケティング入門

現場で気づく隠れた顧客の声

どうしてニーズに注目? 売れる商品を考える上で最も大切なのは、顧客のニーズに着目することであると改めて実感しました。その中でも、顧客自身が気づいていない欲求を捉えることが特に重要であることを学びました。一方で、その気づいていない欲求を見つける難しさも感じ、いろいろな手法を学んだものの、簡単にはいかないと実感しました。 現場観察はどう役立つ? 現在取り組んでいる新製品開発やブランドマネージャーの業務に直結する部分でもあり、現場に出て顧客の行動を直接観察することの重要性を強く感じています。これまで手元のデータとにらめっこしながら顧客のニーズを探してきましたが、今後は現場での観察にも注力していきたいと考えています。

クリティカルシンキング入門

伝え方変えるグラフ選び

装飾のバランスはどう? 伝えたいメッセージを視覚化する際、文章と連携して色や太字、斜線などの装飾を適度に用いることが効果的です。ただし、これらを多用するとかえって読みづらくなるため、バランスに注意する必要があります。また、複数のグラフを使用する場合は、メッセージの順番に合わせた配置を心がけることで、読み手が情報を探す手間を軽減できます。 グラフ選びのポイントは? これまで、アンケート結果をまとめた発表用資料の作成時には、定番のグラフをなんとなく選んでいたことがありました。今後は、どのデータを伝えたいのか、また相手がどの情報を知りたいのかを十分に考慮し、より適切なグラフの種類を選ぶよう努めたいと思います。

データ・アナリティクス入門

数学感覚と実践が生む提案力

数学の感覚はどう? 今週の学習では、数学の問題に取り組むような感覚で、データを加工し、原因を定量的に特定する手法について学びました。すでにWebマーケティング戦略の一環として学習済みのAB分析に関しては、今回は新たな発見はありませんでした。 実践で効果はどう? 実際の業務においても、今回の実践演習のようなわかりやすいデータが存在すると、分析が楽しくなると同時に、説得力のある提案につながると感じました。これを機に、より具体的で定量的なデータの収集を心がけたいと思います。 動画学習の意図はどう? また、動画学習の内容は、データ分析というよりもマーケティング戦略に重点が置かれていると実感しました。

データ・アナリティクス入門

仮説と比較で切り拓く未来

分析プロセスの進み方は? 今回の学習では、データ分析の思考プロセスを体系的に学び、特に三つの重要なポイントを意識することができました。まず、仮説を持つことでプロセスが早く進むという点、次に、分析は比較により成り立つという点、そして数値とグラフの取り扱いが肝要であるという点です。 課題解決の秘訣は? また、自己の課題として、筋の良い仮説立案力を磨く必要性を強く感じました。そのため、幅広い関心を持ち、数多くの因果関係に触れることが重要だと捉えています。データ分析は、実際に因果関係を紐解く作業であり、社会に潜むさまざまな関係に目を向けることで、自然と論理的かつ効果的な仮説立案感覚が養われると実感しました。

データ・アナリティクス入門

複数仮説が切り拓く新たな視点

複数仮説は有益? フレームワークを活用することで、仮説作成における2つのポイント―複数の仮説を立てること、そして仮説同士の網羅性を担保すること―が非常に分かりやすくなりました。いくつかの手法を身につけることで、思考が偏りがちなときに役立てられると実感しています。 決め打ちは疑問? また、仮説を決め打ちにしない姿勢の大切さも感じました。これまでは、一つの考えに固執してしまいがちでしたが、フレームワークを使うことで複数の視点から検証し、反論を考慮することが可能になりました。今あるデータだけでなく、必要な情報は自分で収集するという意識を持ち、より抜け漏れのない仮説作りを目指していきたいと思います。
AIコーチング導線バナー

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right