データ・アナリティクス入門

仮説力が拓く学びの世界

仮説の基本って何? 「仮説」とは、ある論点に対する仮の答えであるという基本から学びました。目的に沿った仮説を立て、必要に応じて複数の仮説を検討することで、網羅性を持たせる手法が重要だと実感しました。 分類で何が見える? また、仮説は目的に応じて「結論の仮説」と「問題解決の仮説」に分類できるという点に注目しています。こうした考え方を取り入れることで、仕事の検証マインドが向上し、説得力も増すことを感じました。さらに、ビジネスのスピードや行動の精度を上げる効果にも期待が持てます。 戦略にどう活かす? 実際に、分析したデータをもとに売上傾向や市場トレンドを踏まえた仮説を立てることで、戦略を具体的に策定できる点に意義を感じています。複数の視点から仮説を立てることで、より多角的な分析が可能になるため、さまざまな場面で仮説の精度を向上させる取り組みが非常に有効だと考えています。

クリティカルシンキング入門

データを活かす!伝える力が磨かれる瞬間

伝え方はどうする? 伝えたいことをしっかりと理解することがまず重要です。そのうえで、自分と同様に情報を理解してほしい相手に対して、どのように表現すれば伝わりやすいかを考え、工夫して可視化します。重要なのは、伝えたことではなく、伝わったことが伝えたことと考え、どのように伝えるかを思考することです。 データの視点を変える? アンケートやデータを目の前にし、それを社内メンバーに共有するとき、一つのデータでも見る角度を変えてみることで、より理解を深めることができるかもしれません。そこで、ひと手間工夫をかけてみようと思います。 提案で納得できる? 自分でデータを取り扱う場面だけでなく、データを提供してくれる人に対しても、「このような切り口や見せ方ではどうか」と提案やアドバイスを行いたいと思います。これにより、より多くの人が情報を理解し、納得することができればと考えています。

データ・アナリティクス入門

グラフで解く学びの秘密

データ表現はどう? 数値だけではバイアスや誤読が起きやすいと改めて感じました。適切な表現方法でデータをビジュアル化することで、データの中身や意味への理解が深まると実感しています。また、幾何平均や加重平均の計算方法を再確認するとともに、有意差95%に関する知識も大きな学びとなりました。 グラフってなぜ大切? 根拠を示したり相手と共通認識をもつためには、グラフやその他のビジュアル表現が重要です。プレゼンテーションで用いるだけでなく、自分自身がデータ内容をより深く理解するためにも、積極的にビジュアル化を活用していきたいと思います。 営業でどう伝える? 今後、営業成績や契約管理など、数値管理が重要な業務において、ビジュアル化は全員の共通認識を促す有効な手段となるでしょう。また、営業現場においても、説得力を高めるために、数字とグラフの可視化をうまく活かしたいと考えています。

データ・アナリティクス入門

平均だけじゃ見えない世界

平均値だけで判断? 平均値だけを見ると誤った判断をする危険性があると学びました。そこで、データの分布を詳しく分析することでばらつきを把握し、分析対象の値についていくつかの代表値を意識することで、より確かな分析が可能になると実感しました。 各地域で違いは? また、これまで地域ごとに単純なヒストグラムグラフを用いて施策の導入率を示していたところ、異なるビジュアルで各地域の分布を可視化する手法が有効であると感じました。これにより、データの違いから仮説や対策を導き出すことができ、より実践的な分析が行えると考えています。 再考してどう変える? 今後は、常に分析の方法やデータの捉え方を再考する習慣をつけ、複数の視点からデータを加工・表示する手法を試みたいと思います。また、比較を意識しながらギャップの要因を探り、そこから具体的な対策を検討していく姿勢を大切にしていきます。

クリティカルシンキング入門

目的がぶれない学びの軌跡

目的と問いに迫る? 今回の学習では、目的を明確にし全体像を把握すること、さらには質問を分類し具体的な問い合わせによって問題点を洗い出すことの重要性を理解しました。その上で、正しい問いの設定には振り返りが不可欠であり、適宜確認することが大切だと再認識しました。 本質問題をどう捉える? プロジェクトを推進する中では、課題解決に向けた取り組みの際、本質的な問題や真因を見失う可能性があると感じました。こうした状況において、常にイシューを意識することで、ぶれずに考え、適切な行動を起こせるのではないかと思います。 イシューは共有できる? これからは、まずイシューを共有できる体制を整え、何が課題で何が目的であったかを振り返り確認することを実行していこうと思います。また、データ分析においても、結論に先立つのではなく、背後に潜む事実をしっかりと確認する姿勢を持ち続けたいと考えます。

クリティカルシンキング入門

異なる視点でデータを深掘りしよう

どんな癖に気づいた? 仕事以外で演習を行うことで、自分の考え方の癖を再認識することができました。また、データ分析においても、様々な可能性から物事を捉えなければ誤った方向に進んでしまう可能性があるため、慎重に進める必要があることを理解しました。今後も常にこの切り口で良いかを確認しながら進めていきたいと思います。 アンケートはどう見える? 研修の受講アンケートの分析を行う際には、そのデータをそのまま受け止めるのではなく、異なる切り口で見たり、他のデータと組み合わせたりすることで、新たな観点からアンケート結果や傾向を捉えることができると思います。 どの切り口で検討? データ分析を行う際、まずは考えられる切り口を出し、それらを組み合わせて分析を進めていこうと思います。また、データ分析後も別の切り口がないか、さらに深堀りが必要ではないかを立ち止まって考えていきます。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

データ分析でビジネスを変革する方法

「分析の目的」をどう明確化する? 分析のポイントを誤ると意味がなくなるため、「何のために」「どの部分を」分析するのかを明確にする必要があります。数字を見る際には、その意味がはっきり理解できなければなりません。特に知識がない人にもわかりやすい数字の提示の仕方が重要です。 ビッグデータ活用の効果とは? ビジネスにおいて、数字はある程度の説得材料となり、クライアントにとっても理解しやすいものです。ビッグデータを活用して根拠資料としてクライアントにわかりやすく伝えることができれば、分析の意義は高まり、ビジネスチャンスも広がります。 分析力を高めるステップ まずは分析の基礎を固めることから始め、目的や意図を明確にすることで分析力を身につけます。それにより、根拠のある資料を作成しクライアントに明確性をもって伝達できるようになり、結果としてビジネスチャンスも広がるでしょう。

データ・アナリティクス入門

データが語る、私の成長ストーリー

現状はどう伝える? 私の目的は、日々KPIを達成できる体制を構築することにあります。そのため、どのように現状を正確に伝えるかが極めて重要であり、皆に心からの気づきを与え、具体的な行動を促すことで、この目的に近づけると考えています。 状況把握の秘訣は? 毎週、先週の状況を報告し、改善された点と引き続き課題である点を会議の場で共有しています。また、状況分析は、先々週との比較だけでなく、前年同時期との比較など、さまざまな視点を取り入れて工夫を重ねるよう努めています。 解決策の効果は? 課題に対する解決行動としては、実際に取り組んでいる組織へのインタビューを実施し、取り組みの効果を定量的に分析することで、対策を行った場合と行わなかった場合の効果の違いを明確にしています。加えて、どのようなデータの見せ方が皆の意識に響くのかを考え、情報の提示方法にも工夫を凝らしています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

クリティカルシンキング入門

データ視点で広がる分析の世界

多角的分析で気づく? データの分析には様々な視点が存在します。一つの視点でMECE(漏れなくダブりなく)の状態を達成しても満足せず、他の視点をいくつか考慮し、それらを比較することによって最も示唆に富んだ分析がどれかを確認する意識が重要であると気付きました。 決算資料の整理は? また、決算説明資料においては投資家の視点に立ち、業績の変化や注目すべき勘定科目、さらには投資家が企業の決算で知りたいことをMECEに従って整理する必要性を認識しました。企業が伝えたい内容も同様にMECEで考えることが大切だと感じました。 伝えたい内容は何? 今後は、ステークホルダーの立場ごとに伝えたいことを漏れなくダブりなく検討することから始めたいと思います。これまではなんとなく投資家や企業の目線を選んでいましたが、これからはその内容をしっかりと把握し、チーム内で議論できるよう努めます。

データ・アナリティクス入門

アンケート成果を活かすデータ分析術

アンケート設計のコツは? デジタル化を進めるにあたり、今後お客様アンケートを実施する予定があります。今週学んだことを活かして、アンケートの集計に役立てたいと考えています。アンケートには定性的および定量的な質問がありますが、定量的な質問に関しては、単に平均値のみでなく、中央値や最頻値も確認し、傾向やばらつきを把握することが重要です。質問を設計する際には、事前に仮説を立て、それを証明するための最小限の質問を設定することが求められます。 結果報告の工夫は? まずは直近のアンケート業務で学びを実践し、集計後にはそれをもとに報告を行う予定です。その際には、結果をどのようにビジュアル化して示すかを考慮します。単純に平均値や最も多い回答を示すだけでなく、仮説に基づいたアンケート設計により、得られた結果から示唆を引き出し、それに基づいて施策をストーリーとして検討することが大切です。

「データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right