データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

戦略思考入門

経済の本質を学び行動計画に活かす

規模と範囲の経済性は? ゲイルでの学習を通じて、経済の基礎概念である「規模の経済性」や「範囲の経済性」について学びました。規模の経済性については、生産量が増えることでコスト削減が可能になるという原理を理解しましたが、実際にはロスが生じる可能性があり、注意が必要です。一方、範囲の経済性では、既存の資源を有効に活用し、新たなビジネスチャンスを生むことができる点を学びました。例えば、業界の垣根がなくなりつつあるコンビニやドラッグストアの事例がこれに該当すると理解しました。同時に、多角化のリスクを認識し、安易な事業拡大を避けるべきであることも学びました。 本当に正しいのか? これまでなんとなく受け止めてきたことを、「本当にそれで正しいのか?」と問い直すことの重要性を改めて感じました。感情や一般的な認識に基づいて判断すると、大きなミスにつながる可能性があります。単なる感覚的な理解ではなく、本質的な意味を理解することが重要です。 総合演習の成果は? 総合演習では、学んだ知識を実際に活用し、ビジネスケースを分析する経験を積みました。これまでの学習が役立ち、複数の視点から問題を分析し、最適な解決策を提案する力が求められる場面が多く、とても良い経験となりました。特に、安易に施策を実行に移さず、目的や市場分析をしっかり行った上で最適な施策を打てるように心掛けたいと思います。 部署の経済性は? 現在の部署のメイン業務が業務集約であるため、「範囲の経済性」は部署内の異なるチーム間で活用できそうです。あるチームで開発したDX業務を他チームの業務に取り入れることは実行可能であると感触を得ました。また、規模の経済性はすでに私の所属部署に適用されており、業務集約と自動化により生産量が増えることで、コストを抑えながら効率を上げることが叶っています。 数字で計画見える? 行動計画は、企画立案時には定量的な数値を活用し、見えない数字を引き出せるよう目指します。また、全体を俯瞰したうえで課題を解決に導くために、戦略的思考を習慣化し、思考力と判断スピードの向上を図りたいと考えています。

クリティカルシンキング入門

考える力を磨く!実践的トレーニング

練習環境は整っていますか? トレーニングを続けることで、自然と楽な方向に流される自分を理解しました。そこで、自分が必ず反復練習する環境を整え、その状況に身を置くことが重要だと感じています。 分解の意義は何ですか? また、分解することの意味を見直しました。分解自体が目的ではなく、物事を多角的に捉え、新たな気付きや発見を得ることが真の目的であると再認識しています。 問いから何が得られた? 次に、「問いから始めること」の重要性を深く理解しました。問いを疑問文の形で始めることで考えるべき事柄が明確になります。また、問いを他者と共有することで、異なる視点を活用し、違和感や見落としを防ぐことができます。さらに、問いを可視化することで、議論や思考がぶれることなく、すぐに立ち戻れるようにしています。 方法の実践はどうですか? これらの方法を、経営層へのレポートや提案資料の作成、チームメンバーとのミーティングなどで活用しています。問題に対する課題の特定や施策の立案の際にも役立っています。 思考は可視化できていますか? 思考のプロセスとしては、問いを立てて可視化し、共有します。さらに第三者の確認を受けることで、ロジックツリーを使い切り口をMECEにするよう心がけています。 説明内容は伝わっていますか? 相手への説明の際は、メッセージの主語を省略せずに意図が明確になるようにし、スライドも相手の興味や目線に合わせて順序立てて構成します。 報告は効果的ですか? 経営層への報告では、相手の視点や興味を想像し、それを背景に文章を構成します。メンバーへのコミュニケーションでは、アイキャッチを使って受け取ってほしい内容を明確にし、ロジックツリーによってメッセージとその根拠を伝えます。 課題発見は進んでいますか? 施策検討の場面では、表面的な問題に対して問いを立て、課題を特定します。また、視点を変えて問題を根本的に見直し、単なる対策だけでなく、抜本的な仕組みの変更なども検討します。この際、「問いを立てる、共有する、可視化する」の3つの基本を意識しています。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

クリティカルシンキング入門

資料作成の楽しさを再発見!

グラフ作成の基本は? グラフを用いた資料作成において、まず基本的な要素であるグラフタイトルや単位に漏れがないかを確認することは、最低限のマナーとして不可欠です。また、自分が伝えたいことが選択したグラフによって適切に相手に伝わるかどうかを確認することも重要です。過去には、文章にグラフを差し込むことが多々ありましたが、それが本当に今回の目的に沿ったものになっているかをしっかりと確認できていないことを反省しています。 メール表現の工夫は? メールを書く際、言いたいことを強調したいあまりにフォントサイズを変えたり、太字にしたり、色を変えたりしていましたが、相手がそのような表現からどのような印象を受けるかを理論的に学び直しました。これを踏まえて、タイトル、色、アイコン、フォントの意味を考慮しながら資料作成に取り組みたいと思っています。 スライド作りはどう? スライドを丁寧に作るためには、グラフの見せ方や文字の表現といった基礎を固めた上で、メインメッセージと情報の順番を合わせることが肝要です。さらに、メインメッセージがより伝わりやすくなるよう、事実にプラスして一言添えることを意識します。読者の関心を引く工夫として、アイキャッチや文章の硬軟、読みやすい体裁を心がけることも必要です。 提案資料作成の極意は? 提案資料を作成する際には、WWH(What-Why-How)での資料作成を基本にしつつ、新たに学んだ内容を活用したいと考えています。メール作成においても、読み手が内容を理解しやすく、次第に読み進めたくなるようなアイキャッチと体裁を意識し、硬軟のバランスを大切にします。 セルフチェックはどう? 資料作成のセルフチェック項目としては、以下のことを確認しています。グラフタイトルや単位の漏れがないか、選択されたグラフが相手に伝わるものかどうか、資料全体としてフォントや色が適切かどうか、メインメッセージと情報の順序が合っているか、そして追加メッセージが必要であるかなどです。メール作成においても、アイキャッチの適切さ、文章の硬軟、読みやすさを確認していきます。

マーケティング入門

マーケティングの視点で業務を変革する学び

学びの成果は? すべての学びが非常に役立ち、業務での課題に取り組む際の参考とすることができました。学ぶ前は、どこから手をつけるべきか、何が正解なのか全くわからず、周囲の経験に合わせたり、指示されたことをこなすだけの状態でした。マーケティングを学び、フレームワークを活用することで、何を使えば業務が効率よく進むのか考えられるようになったことは大きな成果です。 競合意識の再考は? 以前から競合他社には意識を向けていましたが、会社「らしさ」や「強み」にはほとんど目を向けていませんでした。売り上げに重点を置き過ぎ、ただ売ることが目的になっていたのだと思います。最初の週で学びましたが、お客様が欲しいものを提供し、それが売れることによってキャッシュが生まれるという基本的な考え方を理解していなかったと感じました。 今後の戦略は? 今後は顧客重視の視点を大切にしながら、自社の強みや特色を生かして、製品や提供を考えていきたいと思います。この学びを活かして、日々の業務に取り組んでいきます。 商品の成長策は? 既存商品の中で再び注目させたい商品を選び、認知度を高め主要商品に育てていくにはどうすればいいのかという課題に取り組んでいます。どのマーケティングフレームワークが適切かはまだ模索中ですが、AIDMAを活用して商品を購入してもらうための仕組みを構築しようとしています。これまでの会議で、フレームワークを使い順序立てて見極める提案をしたことがあります。 知識の活かし方は? 新しいイベントなどにも課題がありますが、今回得た知識をどう活かしていくべきか模索しています。学びをさらに深め、自分の業務に適用できるフレームワークを見つけたいと思っています。 日々の復習はどう? まずは学びを何度も復習しながら、自分の仕事にどう当てはめられるのか再度意識します。学びの中で重要性を知ったゲイルや振り返り、グループワークでのアウトプットを積極的に行い、周囲にも成果を共有していきたいと考えています。そして、学びを継続するために時間を決め、学ぶことをルーティーン化していきます。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

戦略思考入門

戦略的思考で強みを活かす方法

戦略の独自性はどう考える? 戦略には独自性の強みが必要だと感じています。私は目的意識を持って、ゴールに向かって最短かつ最速の道筋を意識して取り組んでいました。しかし、自分自身や自社の強みを生かしつつ戦略を立てることについては不安が残っています。授業中に取り上げられた大学受験の例を思い出すと、将来何を目指すか、そしてそのゴールに到達するためにどう勉強すれば良いのかまでは考えていたものの、登場人物の強みやどこを伸ばすのかという視点が抜けていたと感じました。 強みと弱みの使い方はどう? 今後は、戦略を立てる際に、強みを発揮できる場面を意識して、その視点を組み込むようにしたいと思います。そして、弱みをどうカバーするかという対処法も考慮し、MECE(Mutually Exclusive, Collectively Exhaustive)を徹底します。まずは、自社の強みと弱みを言語化する必要があります。また、このやり方を本講座で学んでいきたいです。 新規事業の実現方法は? 新規事業の立ち上げにもこの考え方を活用できると感じています。まだ会社が立ち上げ初期の状態にあり、ほぼ全てが新規事業に該当しますが、どうしても短期の利益を優先してしまうことがあります。しかし、中長期の利益を挙げるためには、戦略的に何を取り組むか、何をしないか(しないことを外注する選択肢も含めて)を決め、強みをどう伸ばすかを考えます。特に、現在の課題としては、やらなければならないことが多すぎて余裕がありません。そのため、まずは以下の視点で取捨選択する必要があります。 ・本当にそれは自分がすべきことなのか? ・外注できる業務はないのか?それを生成AIなどのツールを使って最小コストで行えないか? ・その仕事がレバレッジが効くものであるか? 具体的な行動としては、以下を実施します: - 先に挙げた項目の観点で業務を整理する(11月中)。 - 自分がやる必要のない業務は外注し、外注先の選定や生成AIの活用を行う(12月中)。 - 改めて自社の強みと弱みを明文化して、Notionに書き起こす(12月中)。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

「本 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right