マーケティング入門

柔軟思考で切り拓く市場戦略

提供方針は合っていますか? 「ものを売る」際に、誰に何を提供するのかという基本的な方針は、商品開発の初期から考慮すべきだと感じました。しかし、視野が狭くなると新たなポジショニングに気づく余地がなくなり、既存の新規顧客層を逃すリスクもあるため、常に顧客目線で多角的に商品を検証する必要があると実感しました。固定観念にとらわれず、柔軟な視点を持つことが大切だと思います。 ターゲットは正しく? また、ターゲティングに関する6つの評価基準が存在することを知り、感覚的なセグメント分けから論理的なアプローチに切り替えることができました。これにより、具体的な目的設定や対策案を構築できるようになり、より効果的なマーケティング戦略を描けると感じています。 数値化の意義は? 商品開発の現場では、6Rを数値化・可視化することが重要です。市場には既に多くの価値が創造された商品が溢れているため、新たに参入する商品の価値や提案力を判断するためにも、これらの指標が不可欠だと考えています。 企画見直しはどう? 現職においては、ポジショニングを起点に企画を見直し、顧客の記憶に残るプロモーションを検討していく予定です。自社がどのような価値を提供し、どの部分で強みを発揮できるかを明確にするため、ポジショニングマップを活用しながら、自社と競合他社の違いを再評価し、プロモーションの方向性を見直す必要があると感じます。 戦略は再構築すべき? さらに、ポジショニングマップとパーセプションマップに乖離が生じた場合、企業はどのような対応策を講じるべきかが重要な課題です。たとえば、自社商品の高性能が十分に伝わっていないとすれば、別の切り口でマーケティング戦略を再構築するのか、あるいは高性能をより効果的に伝える方法を模索するのか、具体的な事例を踏まえて知りたいと思いました。

デザイン思考入門

実践から生む学びへのヒント

学生支援はどう実現? 自身の高専教員としての立場から、これまでの学びを実践に活かすための取り組みを行いました。まず、学生が直面する「基礎をしっかり学びたいが演習時間が足りない」というジレンマについて、その構造を明確に整理しました。学生が陥りやすい回避行動(課題の丸写しや要領だけの学習など)を予測し、それらを防止するための支援策を設計することで、より効果的なサポートを実現しました。 必要ツールは何だろ? また、各科目で最低限必要な学習ツールを特定し、その使い方を段階的に指導する「学びの三種の神器」の提供にも努めました。学生の成長に合わせた発展的なツールの提案、そして理解度や興味に合わせた課題の難易度調整や柔軟なグループ学習と個別学習の組み合わせにより、一人ひとりにカスタマイズ可能な学習支援を目指しました。 アプローチの効果は? さらに、「山と道」のアプローチを高専の教育現場に応用することで、いくつかの重要な気づきを得ました。まず、教員自身が学生と同じ立場で課題に取り組むことで、表面には現れにくい困難点が明確になり、学生の具体的な声を構造化できることを実感しました。これにより、より効果的な支援策の構築が可能となりました。 基礎習得はどう見る? また、基本的なツールや知識の確実な習得を前提とし、その上で個々の興味や理解度に応じた発展的な学びを提供する段階的設計が極めて重要であると感じました。加えて、小規模な改善を迅速に試み、学生のフィードバックを即座に反映させる継続的な実践と改善のプロセスが、教育の質向上につながると理解しました。 改善サイクルはどう機能? こうした経験を通じ、教育現場にも使用者視点に立った改善サイクルが存在することを改めて認識しました。今後もこの視点を大切にし、より効果的な教育実践を追求していきたいと考えています。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

クリティカルシンキング入門

深掘りの習慣で得た視点の力

深く考える習慣をどう養う? 物事を深く考える習慣を身につけることが大切だと感じました。表面的な情報にとどまらず、本質や意図を常に考える姿勢を保ちながら、鋭敏な感性を持つことが重要です。物の見方も偏らず、多様な視点で捉える姿勢が大事です。新しい発見や視点から考えることで、これまで気づかなかった発見に出会えるのではないかと思います。また、感情に流されることなく、感情的にならずに判断することが求められます。これらのプロセスを経て、質問する力がつき、自信も生まれるでしょう。こうした過程が、正解に至るためのプロセスであり、それこそがクリティカルシンキングだと感じています。 IT業界での活用法は? 私はIT業界に従事していますが、問題解決やトラブルシューティングの場面でこの考え方が役立ちそうです。エラーが発生した際にはまず「その本質は何か?」と考えることから始めます。また、要件定義や仕様書作成の際にも、顧客の要件や要望を本質から理解することで、顧客要望の実現度に比例した品質を追求できます。プロジェクトの意思決定でも、複数の選択肢からベストなものを判断する助けとなるでしょう。具体的な例では、コードレビューが挙げられ、そのロジックが何を実現しようとしているのかを把握するのに有効です。リスク評価やセキュリティ対策など、ほぼすべての場面でこの考え方が役立つと感じています。 具体的なスキル向上法は? まず、明確な目標を設定し、どの業務や場面に適用するか課題を設定します。次に情報収集を行い、報告する情報や受け取る情報の正確性を確認します。その際、情報を疑ってみたり、批判的に見る癖をつけます。話をする際には複数の視点を持ち、問題を小さな単位に分解して考える習慣をつけます。また、感情的になるのを避け、感情と事実を分けます。これらを習得し続けてスキルを磨くよう努力を続けます。

クリティカルシンキング入門

問いが切り拓く未来の一歩

どの問いから始める? どのような問いを立てるかが、その後の取り組みを決定づけます。具体的に考えるべき内容、実現すべき点―すなわちイシュー―を明確にした上で、どのような取り組みを実施すべきかを検討することが非常に重要だと感じます。 具体例は何を語る? ある事例では、2000年代の大手飲食チェーンの実例が紹介されました。最終的には基本的価値の実現を目指した取り組みとなり、奇をてらう必要はなく、現状の経営視点から素直に導かれる施策が体験できました。 本質の問いは何? 本質を捉える問いを立てるためには、まず「問い」から始めること、そして自分の中でその問いを持ち続け、組織全体で共有することが大切です。さらに、クリティカルシンキングの第一歩として、今ここで答えを出すべき問い―イシューを特定することが求められます。問いを特定する際は、問いの形にする、具体的に考える、一貫して意識し続けるという点に留意する必要があります。 論理構築はどう進む? また、ピラミッドストラクチャーというフレームワークを活用することで、STEP1.イシューを特定する、STEP2.論理の枠組みを考える、STEP3.主張を適切な根拠で支えるという手順により、より明確な文章を作成する取り組みが可能となります。 手法の活用は適切? こうした手法を、新しいテーマに取り組む際にも生かし、現状や環境を正しく認識しながら次なる施策につなげていくことが重要だと考えています。実際、報告書などの文書作成においても、これらの方法論を実践することで、より明瞭で説得力のある内容になると感じました。 日常の問いはどんな? また、日常的にどのように「問い」を立て、第一歩を踏み出して実践していくかを考えることが、今後の課題であり、常に意識して取り組んでいきたいと思います。

戦略思考入門

捨てる選択が未来を変える

専門家に任せるの? 今回の学びを通して、顧客メリットを最大化するためには、あえて不要なものを「捨てる」選択が有効であるという考え方に気付かされました。自社で多機能を抱え込むとコストが増大する場合も多く、「餅は餅屋」の精神で専門家に任せる選択肢を検討することが重要だと感じました。 どの価値を優先する? また、何かを追求すれば別の何かを失うトレードオフの問題についても深く考えさせられました。高品質な商品と低価格な商品を同時に提供するのは困難なため、効用の最大化を狙い、両者のバランスが取れるポイントを見極める必要があります。さらに、どの要素に注力するか明確な方向付けを行い、メリハリのある資源配分を心がけるべきだと学びました。 業務の棚卸しは? また、「やらなくてもいい」業務の棚卸しの重要性も理解しました。大量のドキュメントや、念のため作成された監視設定をリストアップし、現状の業務内容を見える化することで、不要な作業を見極め、業務効率の向上に繋げることができると感じました。 捨てる基準は? さらに、何を捨てるかの基準を自分なりに設定することの大切さを実感しました。「本当に必要か」「ないと困るか」「頻度はどの程度か」といった基準に基づき、不要なものを削除し、トレードオフの課題に対しては、どちらの要素を優先するか、またはどのようなバランスが理想かを考えるプロセスが重要だと考えています。 実践の手順は? 最後に、具体的なアイデアの出し方とその評価にも取り組むことが必要だと感じました。設定した基準に沿って不要なドキュメントや監視設定の整理を進め、コスト削減とセキュリティ維持、または性能とのバランスをとるための施策を複数検討しました。その中から現実的で効果の高い方法を選び、具体的な実行手順を考えることで、より実践的な取り組みができると感じました。

リーダーシップ・キャリアビジョン入門

指示から育む本当のリーダー力

企業と個人、どう考える? 企業の仕組みと個人の取り組みという二つの視点から、人や組織を動かす方法について整理することができました。今回のコースでは、組織行動学に基づいた個人の取り組みに焦点を当て、学びを深めました。 リーダーシップは何だ? また、変革を推し進めるリーダーシップと、効率的に組織を運営するマネジメントの違いについても理解が進みました。現代のマネージャーには、両方の資質が求められていると実感しました。 理論の意義は? さらに、特性理論、行動理論、条件適合理論といったリーダーシップ理論の変遷や、条件適合理論の一つであるパスゴール理論についても学び、理論的な理解が深まりました。 リーダー行動の選択は? 最後に、リーダー行動を4分類し、組織や個人の状況に合わせたリーダー行動の使い分けの必要性について学びました。自身の職場で4種類のリーダー行動を適切に使い分けることができれば、組織全体の成長につながると感じています。 接し方はどうする? 中学野球チームでコーチを務めている経験から、選手一人ひとりの特性に合った接し方がより良い成長に寄与することを実感しました。また、チームスタッフとの日々のやりとりやミーティングにおいて、相手に応じた対応を心がけることで、組織としての前進を促せるのではないかと思います。 変化のタイミングは? リーダー行動の変更については、指示型の行動を参加型や支援型にシフトするタイミングや、その程度をどのように考えるべきか、課題として捉えています。いつまでも指示型の行動を続けることは、育成の観点からリーダーとしての職務を十分に果たしていないと感じていますが、どのような流れでメンバーの成長を導くか、具体的なイメージがなかなか湧いていません。具体的なメンバーの成長事例などがあれば、ご指南いただきたいです。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

クリティカルシンキング入門

分析の切り口を変えて、新たな発見を!

データ分析で解像度を高めるには? データは受け取ったままではなく、一手間加えることで解像度が上がります。絶対値だけでなく、相対値でも数字を出して比率を確認し、数字はグラフ化することで視覚的に課題を見つけやすくなります。また、取り扱う情報が売り手側か顧客側かで分析の視点が変わることを認識しておくことが重要です。 偏りを防ぐためにはどうする? 基本的に売り手側の情報から分解することが多かったため、偏った視点だということを意識しなければなりません。切り口は時間、人、手段など様々な角度から分解し、可能な限りMECE(Mutually Exclusive, Collectively Exhaustive)で分解することで、ダブりなくモレなく網羅的に分析が可能になります。 新たな課題を発見する方法は? 事業部の売上を分解する機会がよくありますが、売り手側の情報に偏らないように注意が必要です。慣れた分解手法を使うことが多いため、異なる視点や切り口、深掘りをすることで、今まで見えていなかった課題を見つけることができるでしょう。 分解のブレを防ぐには? 事業部の売上や部署の売上、メニュー毎の売上、顧客毎の売上など、分解できそうな要素は多くありますが、まず最初に全体の定義を決めることで分解のブレを防ぎ、有効に活用していくことが大切です。毎週や毎月のように分析を行う機会があるため、週報や月報でこれまでと違った切り口で分解を試みてみようと思いました。 異なる切り口での分析の効果は? これまで「課題はこれだ」と決めつけていた部分も多かったため、本当にそうか疑い、別の切り口で分解することで新たな課題を特定できると感じています。早速今回の週報から分析と分解を活用し、全体の定義を決め、MECEで考えるよう心がけ、ダブりやモレのない進行を目指します。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

「課題 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right