データ・アナリティクス入門

仮説で切り拓く未来への一歩

問題点は何か? 問題解決に向けた仮説の考え方として、まずは「問題は何か」「どこに問題があるのか」「なぜ問題が発生しているのか」「その問題をどうすべきなのか」という点を整理することが重要です。これにより、現状の課題を明確に把握し、解決策を具体的に検討するための土台が作られます。 仮説の意義は? さらに、仮説を立てる意義として、検証マインドの向上、説得力の増強、問題意識の高さ、そして問題解決へのスピードアップが挙げられます。仮説をもとに行動することで、より迅速かつ正確な対策が講じられるため、業績の結果報告を早期に行うことにもつながります。 仮説の使い分けは? また、仮説には「結論の仮説」と「問題解決の仮説」が存在し、正しく使い分けることで、思考の精度が向上するだけでなく、具体的な改善策を導き出すことが可能になります。これまで漠然と問題に取り組んできた経験を振り返り、より効果的な仮説の立て方や、仮説を絞り込む過程について学ぶ必要性を強く感じました。 実務でどう活かす? 今後は、仮説の立て方やその検証プロセスをより深く学び、実務においてスピーディかつ精度の高い成果を生み出すための知識と技術を身につけたいと考えています。

データ・アナリティクス入門

論理と仮説で挑む解決の道

どうして仮説思考? データ分析においては、目的を明確にし、仮説思考で取り組むことが重要だと再認識しました。問題解決のステップを復習・整理する良い機会となり、筋の通った仮説を立てるためには、多面的な視点からロジックツリーを活用することが有効であると実感しました。一方で、可能性のある原因を網羅的に洗い出すという点ではまだ苦手意識があるため、今後も意識的に仮説思考の習慣を身につける必要があると感じました。 離脱上昇の背景は? 自社のSaaSプロダクトの中では、あるものについて利用者の離脱率が上昇している現状を踏まえ、本講座で学んだ問題解決のステップを振り返りながら検討を進めています。複数の解決策を洗い出すことができたら、それを今期の重点施策として実施し、PDCAサイクルを回す計画です。 論理思考がなぜ大切? これまでの取り組みでは、なんとなくデータを眺め、漠然とした仮説に基づいて解決策を考えてきました。しかし、本講座を通じて、論理的な思考と筋の通った仮説検証こそが、問題解決に直結する重要なプロセスであることを学びました。また、取り組みの中でミーティングを通じてチームメンバーとアウトプットや意見交換を行うことの大切さも実感しました。

データ・アナリティクス入門

問題解決の4ステップで見える未来

問題解決の切っ掛けは? 問題解決の4ステップを意識して取り組むことで、整理して分析できることが理解できました。普段、無意識に考えると、思考が散漫になり、思うような成果やアイデアが得られなくなることを実感しています。特に、「What(何が課題か)」をしっかり意識することで、その後の「Where(どこに問題があるか)」の分析が効果的になると感じ、今後もこの点を大切にしていきたいと思います。 次の対策はどうする? また、次の打ち手を検討する際には、あるべき姿(目標数)と現状(実績)を比較しながら、問題解決の4ステップを具体的に適用し、適切な対策を講じたいと考えています。これまでにも課題を見つけ対策を実施してきたものの、今後はさらに精緻な対策が立てられるよう努めたいと思います。 フレームワーク活用は? 次週からは、フレームワークの考え方を意識し、以下のステップを取り入れていきます。 ① 現状の数字を把握する ② MECEやロジックツリーを活用して整理する ③ What(何が課題か)を明確にする ④ Where(どこに問題があるか)を検討する ⑤ Why(なぜ起きているか)を分析する ⑥ How(どうするか)を具体化する

データ・アナリティクス入門

ロジックツリーとMECEで整理する学びの極意

問題の実数把握の重要性を再認識 問題や現状を実数で把握することの重要性を再認識しました。現状の問題を理解した後、アイディアを整理する手法としてロジックツリーとMECEを学びました。以前からロジックツリーの存在は知っていましたが、2つの種類があることは新たな発見でした。また、MECEについては、社内での係数の分類方法を見ると、元々MECEを意識して分析目的で分類が形成されていると感じ、既存の分類の意義を再確認できました。 数字化の意識をどう高める? 現状や問題を日常的に数字にしていますが、今後はさらに意識的に行おうと思います。MECEについては、大項目で終わらせることがあるので、階層を意識する必要があると考えています。この分野において、AIも進化してきているので、検討するべき項目の洗い出しにおいて、効率的かつ網羅的であることを意識したいと思います。 ロジックツリーとAIの活用 問題の数字化や目標達成までの数字化、対策に対する数値的感覚の共有が重要です。ロジックツリーの階層を意識し、さらなる分類方法の可能性を追求し(「このポイントを分類する方法はあるか?」という問いを持つ)、AIを活用して網羅性の向上を効率化させたいと思います。

クリティカルシンキング入門

言葉で磨く思考の力

どうして言葉が大切? 言葉にする行為は、思考力を鍛える大切なプロセスだと感じました。日本語は主語が省略されがちなため、常に何を主語にするのか意識する必要があると思います。自分の頭の中で、言語の選択、概念の整理、順序の検討、そして根拠づけが自然に行われることで、思考力が高まるのだと実感しました。 メール文章はどう見直す? この考えを自分の仕事に当てはめると、まずメール文章の作成の場面が思い浮かびます。日々、多くの社員とメールでやりとりをする中で、すでに言葉に気を付ける努力はしていましたが、改めて主語と述語の関係に注意する必要性を感じました。 会話で伝える工夫は? また、仕事上での会話においても同様です。親しい間柄になると「わかってくれるだろう」という安心感から、言葉に出して説明することを省略してしまう傾向があります。こうした甘えが思考の明確化を妨げると考え、相手に頼らず自らしっかりと思考して言語化することが大切だと気づきました。 意識すべき二点は? 以上の経験から、① 主語と述語の関係を意識すること、② 思考した上で言語化すること、この二点を今後のメール作成や会話の際に意識し、業務全体に活かしていきたいと思います。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

クリティカルシンキング入門

伝わる!シンプル資料の作り方

伝えたいことって何? キーメッセージを明確にし、伝えたい内容に沿って情報の順序やグラフの種類を選ぶことが重要であると学びました。相手に意図を的確に伝えるためには、単に言葉を練り直すだけでなく、どの情報をどのように表示すれば理解しやすいかを考える必要があると感じています。 新規販促ってどうかな? 今後は、新規顧客拡大に向けた販促手法の整理に取り組みます。上長のみならず、関連部門の担当者と共有する資料作成や、WEBページ改修、さらにはデザインやコーディングを依頼する際にも、明確な方向性を示す手段として活用していくつもりです。 視覚資料の威力は? また、メッセージを迅速かつ正確に伝えるために、図やアイコン、写真、表やグラフなど、視覚的に情報が把握しやすい資料を作成することが求められます。伝えたい内容を最もシンプルに表現するためには、どのデータが必要か、そしてそのデータをどのように表現すればよいかを、販促手法ごとに検討してリスト化することが大切です。 データ整理の真意は? さらに、必要なデータを収集する際には、それぞれのデータがなぜ必要であるのかを明確にしながら、情報の収集と整理を進めることが不可欠だと実感しています。

リーダーシップ・キャリアビジョン入門

心に響く伝え方のコツ

どう伝えるべき? 動画を拝見して、自身の1on1のふりかえりや、実際のシチュエーションにおいて自分がどのように伝えるべきかを考えるきっかけとなりました。よい内容は伝えやすい一方で、ネガティブな事柄については相手を傷つけないように配慮するあまり、伝え方に慎重になってしまう側面も感じました。今後は、相手が納得できる形で伝える技術を実践していくために、普段のコミュニケーションを通じて相手の価値観や仕事観をしっかり把握する必要性を改めて実感しました。 どんな対話が効果的? また、中間面談の時期に合わせ、相手自身が十分に振り返りができるような問いかけや対話を行いたいと考えています。その上で、出てきた内容をもとに、相手が日々の業務に納得し取り組めるよう、どのような支援やアドバイスが適切かを具体的に検討する所存です。 連携で評価はどう? さらに、中間面談では、これまで学んだ内容(WEEK2~5)を実践する予定です。加えて、夏ごろに参加する評価会議に向けて、適切な評価が下せるよう、関係者と連携しながら社員全体の状況を把握する努力をしていきます。その結果、業務や個人の成長支援に一層貢献できるよう取り組んでいきたいと考えています。

デザイン思考入門

共感で広がるデザイン学び

講義の本質とは? 今回の講義を通じて、観察を通して顧客を理解し、効果的な表現方法を見出すというデザイン思考の本質を改めて振り返る機会となりました。デザイン思考の成功には共感の連鎖の構築が重要であると感じ、今後その手法をさらに学んでいきたいと思います。また、一緒に学べる仲間がいることも大変心強く感じました。 教育現場にどう活かす? 私自身は、デザイン思考を教育現場に取り入れ、授業として形にできればと考えています。顧客に寄り添う姿勢が商品開発だけでなく、日常的な対人関係や観察にも波及し、そこからの心遣いにつながると確信しています。今回、最初の講義に触れることで、学生にとっても分かりやすく、人生に活かせる可能性を感じることができました。 実践はどう進める? また、デザイン思考の講義を構築する上で、まずはその本質をどれだけ分かりやすく説明できるか、そして共感をどのように生み出すかが最も重要だと今は考えています。そのため、観察の方法論やそこからのインサイトの抽出プロセスを、単なる知識の習得ではなく実際の作業を通じて学ぶ内容として提供していく予定です。今後は、具体的な方法論についても検討を進めていきたいと思います。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

データ・アナリティクス入門

データ分析から始める業務効率化のアイデア集

分析はどのプロセスから始める? <印象に残った内容> ・プロセスに分解し、各プロセス毎に数値を見る ・A/Bテストの前に目的と仮説を明確にする ・データ分析はまず身近な課題から着手する A/Bテストの代替案は? <感想> A/Bテストはオンラインサービスとの相性が非常に良いが、対面サービスやコストの問題で簡単に実施できない場合の代替案が気になりました。 残業時間削減へのアプローチ ①社内で使用しているSFA(営業支援システム)の切り替えに伴い、入力画面のインターフェース検討においてFigma等のツールを使ってA/Bテストを実施し、手戻りが無いようにする。 ②今後の人員削減に伴い、業務の棚卸しを行う。 この切り替えは少し先になるため、思考訓練として自分の残業時間を減らすための施策を考えました。 まず、業務の洗い出しと各業務のプロセスの分析を行います。そして、以下の代案を検討します。 外注や自動化は可能? ・外注の可能性を探る  ・無料の外注が可能か  ・有料の外注が利用できるか ・自動化を進める ・不要なプロセスを廃止する 以上のステップを踏み、効率的かつ効果的な業務運営を目指したいと考えています。

データ・アナリティクス入門

選ぶ力が分析を変える

手法選択は何が肝心? 様々なアプローチからデータを検討することで、仮説の精度が向上することを実感しました。しかし、すべての手法を無差別に試すのは非効率であり、分析の目的に沿った適切なアプローチを選ぶことで効率よく進めることが大切です。 代表値の選び方はどう? また、代表値には多くの選択肢が存在するため、データの性質や分析目的に応じた計算方法を選ぶ必要があります。一定の経験を重ねれば、どの代表値が最適かパターンを把握しやすくなると思います。 グラフ選びはどう判断? 製品の計測データなどを分析する際は、適切な代表値を選ぶことに加えて、標準偏差も併せて算出することが求められます。レポートを作成する際には、分析目的とデータの特性を踏まえて適切なグラフを用い、他者の手法に対しても改善の余地がないか検討する姿勢が大切です。 再検討の意義は何? これまで、代表値として単純な相加平均に頼ることが多かったため、今後はデータの性質を再検討し、その選択が本当に妥当なのかを吟味するようにしたいと考えています。また、グラフの選定についても感覚に頼るのではなく、目的を明確にした上で最適な可視化方法を選ぶよう努めます。

「今後 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right