データ・アナリティクス入門

目的と比較で切り拓く新たな洞察

分析の目的は? 今週の学習では、分析の本質が「比較」にあることがとても印象に残りました。分析を始める際は、まず「何を明らかにしたいのか」という目的を明確に定め、その目的に沿って「何と何を比較するのか」を考える必要があると学びました。以前は、目に見える数値や要素をそのまま眺めるだけで分析を行ってしまい、十分な示唆が得られていなかったと気づきました。目的に立ち返り、目の前にない要素も含めた比較を行うことで、初めて意味のある洞察が得られるのだと理解しました。 改善点はどこ? 今回の学びは、GA4を活用した社内サイトの分析や、ページ改善、制作判断などの現場で役立つと考えています。具体的には、同じ目的を持つページ同士を比較しながら、閲覧数、流入元、離脱状況などのデータをもとに、どの部分に改善の余地があるのかを判断する手法が特に有用だと思いました。 目的整理はどう? 今後は、GA4の数値を目にする際に、まず「今回の分析の目的は何か」を整理し、その目的を明らかにするために「何と何を比較すべきか」を先に決めてからデータに目を通すよう意識したいと思います。また、現場からの制作依頼に対しても、既存のページとの比較を行い、対応の優先順位や妥当性をデータをもとに説明できるよう努めたいと考えています。 目的不明な時は? 一方で、実務の中では目的がはっきりしない状態で分析や施策検討を求められることも多いと感じています。そのような場合、皆さんはどのようにして目的を整理し、分析の着地点を見出しているのか、ぜひお伺いしたいです。

戦略思考入門

小さな気づき、大きな一歩

思考の整理は? これまで体系的なビジネススキルを学ぶ機会が少なく、物事を考える際に混沌とした思考に陥りやすいことを、今回の学習を通して改めて痛感しました。現時点ではフレームワークを即業務に活用するのは難しいと感じていますが、今後も継続的に学習を進め、まずは基礎知識の習得に注力したいと考えています。 日常に適用する? また、会社全体の戦略検討といった大きなテーマだけでなく、日常業務で生じる比較的小さな案件にも、適用可能なフレームワークや分析手法が存在することの重要性を実感しました。こうした視点を持ちながら、今後の実務に取り組んでいきたいと思います。 危機対応の秘訣は? さらに、今週学んだフレームワークを活用し、具体的な業務改善を目指します。たとえば、トラブル発生時の危機対応では、社会的影響や規制当局の動向、世論の反応を整理し、業界内の他社対応や全体への波及効果を見極めることで、より適切な対応につなげたいと考えています。新商品や新サービスの発表時には、自社の強みと外部環境を分析し、訴求すべきポイントを明確にしたうえで発信内容を構築することが目標です。 環境変化を捉える? 加えて、SNSや報道動向を継続的に観察し、環境変化を早期に捉えて戦略の微調整を行い、ブランド価値の維持・向上に貢献したいと考えています。具体的には、担当案件ごとに「目的」「現状」「評価指標」を整理し関係部署と共有するとともに、定期的な振り返りによって分析結果と実際の反応との差を検証し、より戦略的な行動に反映させるつもりです。

デザイン思考入門

枠を超えるシニアの発想革命

SCAMPERはどう効く? シニア社員のモチベーション向上を目指し、SCAMPERの手法を適用してみました。まず、Sの観点ではスポーツ分野のカウンセリングに類似したアプローチを用い、Cではカウンセリングメニューとの組み合わせを工夫しました。 各手法の意図は? さらに、Aでは僧侶の説法を応用することで新たな視点を取り入れ、Mではモチベーションが下がっているシニア社員を集め、意見交換の場を設けました。Pの段階では学術的な視点から指導を行い、Eでは宴席を設けることで、参加者それぞれの本音を引き出すことに努めました。最後のRでは、一定の指示を強制的に実施する手法を試してみました。 条件にとらわれない? この取り組みでは、問題解決の方法を必要性だけにとらわれず、前提条件に頼らずに幅広い視点で考えることの大切さを学びました。また、施策が対象者に満足感をもたらすかどうか、対象者の気持ちに寄り添って検討することが重要であると感じました。形式や方法に囚われず、自由な発想で取り組む姿勢も求められると実感しました。 デザイン思考の効果は? さらに、デザイン思考については、チームワークの活性化に寄与する技法として大変意義深いと感じました。特に、チームメンバーのアイデアを否定せず、常に視覚化してタイムリーに共有することで、全体の創造性を高められるという点に気づかされました。また、他業界や他分野に広く関心を持ち、豊かな語彙力を活用してアイデアを具体的に言語化することが、今後の課題解決においても重要であると感じました。

データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

マーケティング入門

受講生が紡ぐ学びのキャンバス

価値はどう伝わる? サービスが提供する価値は、モノとそれにまつわる体験がしっかりとお客さまに届くことで実現されます。お客さまが「また買いたい」「また行きたい」と感じ、ファンになっていただければ、そのサービスは他と差別化できる大きな強みとなります。しかし、同じ体験が続くと魅力は次第に薄れてしまうため、常に新しい体験の提供が求められます。また、企業のブランディングやその打ち出し方も、こうした体験の一部としてお客さまに伝わっています。 営業から体験へは? カンファレンスやイベントを通じたリード獲得から、実際の営業での商談、さらにはサービス導入前後のお客さまの体験まで、一連の流れがどのように評価されているかは、今後のサービス向上にとって非常に重要です。現在、ハイタッチとテックタッチの使い分けは進められているものの、お客さま向けのコミュニケーションプランの整備にはまだ改善の余地があると感じます。 現場の知見はどう? さらに、実際にお客さまのもとへ出向き、現場の洞察を得ることは、サービス改善のために必須です。どのような前提知識で自社サービスが利用され、また課題や十分に活用されていないサービスが何かを深掘りすることで、お客さまのニーズにより的確に応えることが可能になります。加えて、社内ではヒアリングの様子をSlack huddleなどで共有し、従来のお客さまターゲットと今回のニーズとの違いや、求められているワンアクションの軽減点について、開発メンバーと共に検討することが大切だと実感しました。

アカウンティング入門

企業財務に秘めた学びの発見

P/LとB/Sはどう見る? 業種によって、P/LおよびB/Sの構造が大きく異なります。売上原価や販管費も、事業が提供する価値に応じて変化します。例えば、ある企業では、従業員が主要な提供価値となるため、人件費が売上原価に含まれています。つまり、どのような資産を保有し、どのような投資を行ったかをB/Sで確認し、その結果P/L上でどれだけのコストがかかり、どれだけの利益が出ているのかを理解することができます。事業内容と財務情報が密接に結びつく点が、非常に興味深いと感じました。 意外な学びはどこ? 自分が関わっている領域ではイメージしやすかったものの、関わりの少ない分野については新たな発見も多く、理解を深める良い機会となりました。AIを活用して主要な事業ごとのビジネスモデルや収益の特徴を整理することで、概念をしっかりと把握できたと感じます。今後は、代表的な企業の財務諸表を実際に見ながら、更なる理解の深化を目指していきたいと思います。 大事な視点は? また、以下のような視点も重要だと考えます。 決算報告は何を示す? まず、第二四半期の決算報告が自社だけでなく他社も発表しているため、これを比較検討することが有意義です。自社のP/Lの変化を、同四半期に実施した施策(提供価値の向上、投資、資産状況など)と照らし合わせて理解を深めることが求められます。 今後の戦略はどうする? 次に、自社の今後のP/L状況を予測し、戦略の変更や追加施策の必要性について検討することが大切だと感じています。

戦略思考入門

見える化で挑むコスト改革

学びで何が変わった? 今週は、規模の経済性、習熟効果、範囲の経済性について学びました。これらはコスト削減に役立つという認識は以前からありましたが、具体的に言葉にして整理されることで、より実感できるようになりました。また、効果が見られない場合もあるという説明を受け、自分自身がその点に気づいていなかったことを再認識しました。 ネット効果をどう見る? また、過去にゲーム業界、現在はIT業界にいるため、ネットワーク経済性に関しては日常的に意識する場面が多いですが、今回の学びにより、普段はあまり意識していなかった部分も含めて、再確認することができました。 固定費削減の秘訣は? 私の所属する会社はデータ分析をビジネスの柱としており、これまで競合が比較的少なく、専門職であったため高コストでも許容されていました。しかし、最近ではLLMやAIエージェントの登場で、専門職に限定されない業務も増えているため、差別化戦略を検討する一方で、コスト削減が重要な課題となっています。いかに固定費を下げ、売上や利益を向上させるかが喫緊のテーマとなっており、今回の学びは具体的な施策を検討する際の重要な軸として活用していこうと考えています。 可視化で議論進む? 今後は、各施策にフレームワークを適用して抜け漏れがないか、また見落としているメリットやデメリットがないかを整理し、可視化していく予定です。上司とのディスカッションは口頭で進むことが多いため、こうした可視化を通じて議論をより明確に進めていきたいと思います。

アカウンティング入門

仮説と実践で切り拓く経営視点

例題企業をどう予測? 実践演習では、まず例題企業の事業活動を予測し、売上、売上原価、そして資産についての仮説を立てました。その後、グループワークを通じて各自の仮説をもとに議論し、お互いの視点を共有することができました。 数値の不一致はなぜ? 仮説を立てた後に財務諸表を確認することで、予測と実際の数値に差があった項目について、その理由を深く掘り下げることが印象に残りました。 ライバルはどこに投資? また、ライバル企業や関係企業の財務諸表を参照し、どの部分に投資しているのか、今後のビジネスの方向性をどのように読み解くかを学ぶ貴重な機会となりました。 経営層に確認すべき? 自社のケースでは、公開されている最新の情報をもとにP/LやB/Sの内容を確認し、増減要因について仮説を立てた上で、不明点があれば経営層に確認する方法の重要性を実感しました。 各社の特徴は? さらに、同業他社の公開されている財務諸表を、ビジネスモデルが異なる数社分について仮説をたてた後に確認するというプロセスは、各社の特徴を理解するうえで非常に有意義でした。 おすすめ書籍は? また、先生におすすめいただいた書籍のうち、1冊目はほぼ読み終えたため、残る2冊目についても読了を目指したいと考えています。 次のステップは何? 今回の振り返りでは、今後のステップとして資格試験の勉強を通じてアウトプットするか、または次回の講座の受講を検討するかという方向性について真剣に考える良い機会となりました。

戦略思考入門

実戦に活かす経済理論のヒント

学びはどこから来る? ビジネスを成功させるためには、人件費削減や生産性向上に加え、事業経済性について学ぶことが必要だと実感しました。特に、規模の経済性、習熟効果、範囲の経済性、ネットワーク経済性に関する理解が深まったことが印象的でした。総合演習では、ある企業を題材に、売上の分析や改善策、事業の多角化、宣伝、広告などについて考察し、理論の具体的な適用方法を探ることができました。 役割分担は見直せる? 自身の業界や自社に当てはめると、規模の経済性と範囲の経済性においてまだ改善の余地があると感じました。特に、各組織での役割分担が固定化している現状を変えるためには、上位概念を明確に示し、どの部署が何を担い、どこに責任があるのかを明確にする仕組みが求められると感じます。また、アウトプットの成果を正しく評価できる体制も必要だと実感しました。 改善策はどう探る? さらに、習熟効果に関しては、ノウハウのマニュアル化や知識の蓄積といった形式知の整備、さらにはAIの活用を通じた日々の改善が重要だと再認識しました。遅れを取るリスクを改めて認識し、今後の課題として取り組んでいきたいと感じています。 戦略はどう組み立つ? 自身の開発業務においては、ターゲットとする国や地域、対応する法規をグルーピングし、いかに規模の経済性を活かすかを検討する予定です。自社だけでなく、グループ会社や主要関連企業との整合性を十分に考慮し、事業全体としての経済効果を最大化する戦略を構築することが重要だと考えています。

データ・アナリティクス入門

仮説で広がる学びの世界

仮説の意味は? 仮説について、「結論の仮説」と「問題解決の仮説」という2つの種類があることを学びました。普段何気なく使っていた「仮説」という言葉について、自分はどちらの立場で話していたのだろうかと振り返る貴重な機会となりました。また、仮説を考える際には、決め打ちせず複数の可能性を探ることや、さまざまな切り口から網羅的に考えることの重要性を再認識しました。さらに、データ収集においては、必要なデータだけでなく、仮説に対する反論を排除するために比較対象となるデータも意識的に集めるべきであるという点が印象に残りました。 3Cと4Pの使い分けは? 業務では、Customer/Competitor/Companyの3C分析を中心に行っていましたが、細かいサービス検討の場面では、Product/Price/Place/Promotionの4Pも活用していく必要性を感じました。特に新規事業の商品検討にあたっては、4Pの視点からより具体的な検討を進めたいと思います。 問題解決の手順は? また、問題解決のプロセスとして、What、Where、Why、Howの順で考えることの重要性を学びました。これまでどうしてもHowから着手してしまう癖があったため、今後の学習期間内に、残りのプロセスもしっかり取り入れるようにしていきたいと考えています。 検証との連携は? 最後に、仮説と検証はセットで考え、事前の準備や仕込みを徹底し、比較データなどを用いた適切なデータ収集ができるよう努めたいと思います。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。
AIコーチング導線バナー

「今後 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right