クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

戦略思考入門

部下も納得!目標設定の秘訣

会議で何が決まる? 多くの企業では、期初会議などの場で新しい施策や目標が掲げられることが多いですが、捨てる方針や優先順位を明確にする発表は稀です。この結果、部下が優先順位を把握できずに困惑することがあります。上司は客観的な視点やデータをもとに、明確な指示と評価基準を設定し、追跡評価を行う必要があります。 視点の根拠は? 客観的視点を提示すると以下のようになります: 数字の背景は? 1. **単位時間あたりの利益率** 販売活動に関する業務では分かりやすいですが、カスタマーサービス(CS)向上や開発業務では試算方法を考慮する必要があります。 2. **顧客(企業)の成長、将来性** 利益だけでなく、その業界や取り扱い製品の伸び率を判断材料にします。 3. **企業文化やキャラクター** 良好な企業文化を持つ顧客とは関係を継続しますが、そうでない場合は時間や精神的負担を考慮し、関係を見直す必要があります。 業務選定の理由は? 医療機器の取り扱い業務においても優先順位の検討が重要です。具体的には以下の場面で検討が求められます: 販売支援の必要は? 1. **販売支援** 臨床的なサポートが期待される装置プレゼンテーションやデモンストレーションは、営業推進部で完結できるような仕組みや教育を整備します。 学会支援の意義は? 2. **学術活動** 学会発表支援や実験サポートにおいては、顧客のキャラクターや将来性、そして企業としてのメリットを考慮し、優先順位を付けます。さらに、有償化を検討します。 説明方法はどうする? 3. **取扱説明** 製品装置が多様であるため、無差別曲線を利用してサービスとアプリケーションでバランスを取り、組織や役割を明確にします。これにより、社員の理解を得るとともに、顧客にも説明し納得してもらうことを目指します。例えば、取扱説明の影響が少ない装置には教育を行い、合格者にはバッチを提供するなどの工夫をしています。 効果はどのくらい? これらのプロセスを通じて、業務の効率化と顧客満足度の向上を図ります。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

クリティカルシンキング入門

相手に伝わりやすくする秘訣

何を学んだの? 相手に伝わる文章を作成するために学んだこととして、印象に残った以下のポイントがあります。 理由は何かな? まず、理由や根拠を明確にする必要があります。何かを伝えたいとき、理由や根拠は多岐にわたりますが、すべてを伝えるのではなく、相手に伝わりやすいものを選択することが重要です。相手との関係性や伝えたい理由をしっかりと考えることが大切だと思いました。 説明の順序は? 次に、ピラミッドストラクチャーを意識して説明することが有用であると感じました。理由や根拠を選んだあとは、それをどのような順序で伝えるかが重要で、キーメッセージを最初に伝え、それを補足する内容を整理して提示することで、自分にも相手にも分かりやすい説明が可能になります。 伝え方、変えてる? また、人材を伝える際には、その人材の業界や特徴に応じて伝え方を変えることが大切です。その理由を2つに絞って、ピラミッドストラクチャーを意識しながら説明することでより効果的に伝えることができると思いました。 会議はどう進む? さらに、人材育成ミーティングでは、関係者それぞれの課題意識や会社のゴールを考慮し、目的を明確にして進めていくことが重要です。参加者全員の立場や役割が異なるため、互いを尊重したコミュニケーションが大切だと思います。 伝えすぎてる? 私自身の伝え方や文章作成の特徴として、注意すべき点が2つあります。まず、理由や根拠を多く伝えすぎる傾向です。情報をたくさん伝えようとしすぎて、相手の理解が追いつかないことがあります。参加者ごとに必要な情報は異なるので、適切な情報を選んで伝えることを心がけたいです。 数値だけで十分? そして、数値やデータを根拠にしがちな点です。クリティカルシンキングでは数値やデータの重要性が強調されていましたが、必ずしもそれが必要な情報でないこともあると気づきました。新規事業や戦略策定ではデータがない場合も多く、無理に関連の薄いデータを用いるのではなく、適切な理由や情報を選択する柔軟性が必要だと感じています。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

クリティカルシンキング入門

数字の力を引き出す分析の秘訣

データ分析の重要性とは? データに基づいて原因を突き詰めていく際、数値を分解しグラフなどに視覚化することで、傾向が見えてくることがあります。さらに、その数値を分解していくことで、他者に説明する資料としても、表よりもグラフの方が一目瞭然です。 効果的な分解方法を探る 分解の方法としては、"いつ(when)"、"誰が(who)"、"どのように(how)"などがあります。博物館のワークでは外的要因に注目しましたが、そのものの数値自体も分解することが大切です。 発見を得るための試行錯誤が不可欠 切り口や切り方を変えて、いろいろ試してみると違った発見があるかもしれません。キリの良い数字でまとめるのではなく細かく刻むことで、見えてくることがあります。また、段階的に切り口を広げて掘り下げていくことで、新たな発見ができることもあります。様々なアプローチを用いて分析をする結果、データに説得力が生まれます。 分析のプロセスから何を学ぶか? 分析を進める中で、切り口や刻み方によって何も見えてこないこともありますが、それもまた意味のある結果だと言えます。このように色々な方法を試すことが重要です。 実際のデータで見る数字の力 私はあまり数字を扱う業務はありませんが、数字を分析することで見えてくるものがあります。例えば、製品群ごとの売上金額や粗利金額の月別、前年比の比較、契約件数と売上金額の関係性、契約金額と粗利益率の関係などを調べることができます。 優先すべき分析視点とは? これらのデータから、売上低調製品の原因や高粗利商品などの理由を探ることができます。月に一度、売上データを集計し分析を行い、そのデータを基にプレゼン資料を作成します。資料作成の際には、ファクターに基づき数字を視覚化することで説得力のある資料を作成します。 営業活動におけるデータ活用 また、自分の営業活動においてもアポイント数や進捗などを視覚化し、得意先や物件ごとの売上金額、粗利金額などをまとめています。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

「関係 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right