リーダーシップ・キャリアビジョン入門

キャリアの未来を拓く4つの理論

講座の狙いは何? 今週の講座では、「代表的なキャリア理論を知る」ことに焦点が当てられました。以下にその内容をまとめます。 キャリアの価値基準は? まず、キャリア・アンカーについてです。これは、エドガー・H・シャイン博士が提唱した理論で、自己分析や他者からのフィードバックを通じて、自分の仕事における価値観を明確にする方法です。キャリア・アンカーには8つの種類があります:特定専門分野、全般管理コンピタンス、自律・独立、保障・安定、起業家的創造性、純粋な挑戦、奉仕および社会貢献、生活様式です。これらを確認する手順として、自己診断やインタビューを行い、それらを考慮してキャリア開発を決定することが推奨されます。この理論は、現在のキャリアや人生の判断基準として役立つ一方で、制約にもなる可能性があります。 生存戦略はどう挑む? 次に、キャリアサバイバルについてです。これは、職務と役割の戦略的プランニングに関する分析手法で、環境変化や複雑な人間関係に対応するために重要です。組織が自分に求めるものを把握し、変化を予測して対応するための計画を立てることが求められます。 今後のリーダー像は? 続いて、これからのマネジャーとしてのあり方です。急速な変化に対応するために、自己変革を継続することが大切とされています。必要なスキルには個人としてのスキル、仕事に必要なスキル、テクニカルスキル(論理思考力、分析力)、ヒューマンスキル(コミュニケーション、巻き込む力)、コンセプチュアルスキル(目標設定、ビジョン設定)などがあります。 指導法はどう使う? 最後に、リーダーシップのスタイルについてです。リーダーシップは、状況や個人の特性に応じて活用の仕方を変えることが重要とされています。具体的には、指示型(具体的な指示を出す)、コーチ型(問いを立て、意見を引き出す)、支援型(働きやすい環境を整える)、委任型(権限を委譲する)のスタイルがあります。 支援策はどう考える? これらの理論を踏まえた上で、チームメンバーのキャリア開発を支援するための具体的な行動として、自己診断や個別インタビューの実施、キャリア開発計画の策定、定期的なフィードバックセッション、環境変化の情報共有、リーダーシップスタイルの適用が挙げられています。これにより、メンバーのキャリア開発を支援し、チーム全体のパフォーマンスを向上させることが目指されています。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

クリティカルシンキング入門

本質に迫る!自問自答で見つけた答え

自問自答の価値は? 物事を考える際に、目先のことから手を付けるだけでは本質にたどり着けず、迷走してしまうことがあります。しかし、「何をしたい?なぜしたい?本当に?」と自問自答を繰り返すことで、本質が見えてくることがあります。このようにして、本当に必要なものを見つけることができます。 多角的な視点の重要性とは? また、自分の思考には偏りがあることを自覚することが重要です。経験や現職場の影響で視点が偏り、答えが浅くなりがちです。そのため、色々な視点や視座から物事を考える必要があります。例えば、自分・他人・社会・若者・年寄・男性・女性・外国人・障碍者など、多くの視点があります。多くのことに着目することで、新たな発想や気づき、リスクを知ることができます。 もう一人の自分を育てるには? 偏りを無くすためには、もう一人の自分を育てる必要があります。このもう一人の自分とは、「その答えで本当に良いのか?」「本当にそれがやりたいことなのか?」などを問い続ける存在です。結論を出す際に、十分に考えたかどうかや、考えが適切だったのかを確認するために必要です。 クリティカルシンキングの効果は? 職場で意見が分かれたり、目的が明確でない場合、クリティカルシンキングを用いたディスカッションが非常に効果的です。自分や他者の意見をディスカッションすることで、本当の目的や問題点、思考の偏りなどが明らかになります。見えてきたことを自分目線・他者目線・もの目線で深堀りすることで、より良い解決に繋がります。このようなディスカッションは、目的の整理、手法の選択、共通認識のすり合わせなど、さまざまな効果を期待できます。また、学習の面でも非常に効果的です。視野が狭い同僚や部下、自分自身も含め、繰り返し教え合うことで偏った見方を回避し、お互いに成長できます。これにより、業務の効率化や高品質化に繋がると考えます。 目的を考えることの意義は? 仕事や遊びなど、何事にも目的を考えることが重要です。自身だけでなく、関係者とディスカッションすることで目的を明確にできます。 三つの視を意識する意義は? 「自分・他人・もの」の三つの視を常に意識し、あらゆる角度から物事を考えることが求められます。頭で考えるだけでなく、他者に伝えるアウトプットトレーニングを行い、フィードバックをもらうことで更に視点を増やし、もう一人の自分を成長させることができます。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

クリティカルシンキング入門

相手に伝わる論理的コミュニケーションスキルの磨き方

伝えるスキルとは何か? 相手に何かを伝える際に一番重要なのは、「何を伝えたいのか、何を理解してもらいたいのか」を明確にすることだと感じました。そのためには、感情や直感に頼るのではなく、論理的な根拠に基づいた主張を準備する必要があります。さらに、その際には相手の視点も考慮するべきです。こちらがどんなに論理的な準備をしても、受け取る側の準備が整っていなければ、それは「伝わっていない」のと同じです。相手の理解レベルに合わせて情報を構築することが求められます。また、「対話」の意識も大切です。相手の反論も想定しながら、柔軟に意見を伝える姿勢が必要だと思いました。論理的な主張を十分に準備できたなら、それをいかに簡潔に表現するかが重要です。長々と説明することなく、効果的に伝える技術が大事だと考えます。 IT業界での活用法とは? 私はIT業界で働いています。「他者に理解・納得してもらうスキル」はさまざまな場面で役立ちます。例として、顧客の要求仕様のヒアリングがあります。これは相手がITに詳しいとは限らないため、相手の理解レベルに合わせて、意図を明確に整理し伝えることが求められます。また、コードレビューでも役立ちます。自分がレビューする際も、他者からレビューを受ける際も、コードの意図を明確に整理し、理解可能な形で伝えることが重要です。プロジェクトの状況報告でも同様に、相手がそのプロジェクトに詳しくない場合を考慮し、論理的かつ簡潔に情報を伝えなければなりません。さらに、日常のコミュニケーションや後輩指導においても、このスキルは非常に役立ちます。 スキルを向上させるには? では、「他者に理解・納得してもらうスキル」を身に付けるためには、どのような行動計画が必要でしょうか。まず第一に、その手法、つまり「基礎」を身に付けることが必要です。具体的には、MECEやピラミッドストラクチャーといった分析や説明の手法を学びます。次に、これらの手法を実際に使ってみます。通常の会議やプロジェクト報告、レビューなどの場面で、それを使用することを意識して準備します。基礎を身に付け、実践する場を確保したうえで、反論や疑問にも適切に対応する意識が重要です。そして、実践後には振り返りを欠かさず、成功した部分や改善が必要な箇所を再認識し、次に活かします。こうしたプロセスを繰り返すことで、「相手に物事を伝える」スキルを確実に身に付けていきたいと考えています。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

リーダーシップ・キャリアビジョン入門

挑戦と尊重で築く新たな未来

どう生き抜く方法は? 現在、自分は当初の目標から大きく逸れてしまっている状況にあります。しかし、今週はどのように腐らず生き残るかを改めて考える機会となりました。今後は、専門性の追求や技術の向上、チャレンジ、そして奉仕といった自分にとって大切な価値を、現部署内でどう伸ばしていくかを意識しながら業務に取り組んでいきたいと思います。 相互理解は可能? また、日々関わる人々―特に交流が難しいと感じる方々―のキャリアアンカーを理解することが、今後の業務に役立つと感じました。私は専門性の追求とチャレンジを重視していますが、現部署には保障や生活のバランスを大切にする安全志向の方が多いと実感しています。このため、業務改善や効率化の提案がこれまで何度も否定されてきたのは、互いの価値観の違いが一因であったのかもしれません。新しい試みを促す際も、相手の価値観を無視すれば双方にストレスが生じるだけだと痛感しました。これからは、相手のキャリアアンカーを尊重しつつ、自己の大切な価値観を実現するため、これまで学んだエンパワメントやフィードバックの手法を活用したコミュニケーションを心がけたいと思います。長期的には効率化と改善が正しいとしても、相手との関係性を無視して推し進めることはできません。場合によっては、あえて非効率な方法を受け入れることが結果的な近道になることもあると感じています。 行動計画はどう? 以下は、現状を乗り越えるための行動計画です。 【Do】 ・専門性や技術の追求、チャレンジといった大切な価値観をぶれずに持ち続ける。 ・まずはプロジェクト管理能力を向上させ、業務改善の実績を積むことで生き残りに必要なスキルを磨く。 【Don't】 ・相手のキャリアアンカーを無視した価値観の押し付け。 ・即時の行動や即座の成果を求めること。 この方針をもとに、毎年委託しているあるプロジェクトの管理体制の整備から着手します。まずは、2月中に委託先と今年のおおまかなタイムラインを確認し、ガントチャートを作成して共有・合意します。契約更新の際には、記載内容の不十分な箇所を改定し、変更時には相手の価値観を尊重する点に留意して社内関係者とのコミュニケーションを図ります。さらに、AIを活用して契約書のドラフトを効率的に整え、リーガルチェックから捺印までのプロセスを2週間以内に完了させることを目標とし、あらゆる手段で時短に努めます。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

デザイン思考入門

デザイン思考で生まれる祭りの奇跡

なぜ夏祭りに魅かれる? 私が参加している地域活動の中で、毎年9月に自治会主催で開催される公園での夏祭りに、デザイン思考の手法を応用できる可能性を感じました。地域住民が自ら作り上げ、参加する祭りは、住民間の一体感を醸成し、地域コミュニティの維持に大変意義があると考えています。 情報の集め方は? まずは、地域の動態データや歴史、地形・自然環境といった定量情報の収集に加え、住民の意識や興味を探るため、街並みの観察や各種団体、学校、飲食店での会話など、幅広い交流を実施しました。そして、夏祭りに特化し、過去の祭りの感想やアイデア、場合によってはネット上のコメントなどを収集し、さらには他地域の事例も参考にすることで、多角的な視点から祭りのあり方を見直しました。 住民の反応は? 収集した情報をもとに、地域住民をいくつかのパターンに分類し、ペルソナを設定して共感マップを作成しました。参加意欲の高い層、興味はあるが一歩踏み出せない層、自分には関係ないと感じる層など、複数の視点からユーザー体験を明確にし、夏祭りへの参加インサイトを浮き彫りに、カスタマージャーニーを設計しました。 意見のまとめ方は? その後、地域住民を対象としたワークショップを複数回開催し、参加者全員でビジョンやミッションを共有しながら、様々な課題の抽出とアイデア出しを行いました。実行グループには自治会の担当者も加わり、ブレインストーミングやシミュレーションを経て、評価を得ながら具体的な実施計画を策定しました。全員で高め合うために、意見の偏りが生じないよう付箋などを用いてアイデアを平等に扱う工夫も取り入れました。 計画実行の秘訣は? 実行計画は、予算やスケジュール、人的資源、リスクなどの各要素を評価し、必要なパフォーマンスの確保方法も検討しながら、効率的に進めるためのプロジェクトマネジメント手法を取り入れました。基本的にはウォーターフォール方式を採用しつつ、進捗に合わせて新たなアイデアも取り入れ、柔軟に対応しました。 デザイン思考の本質は? この一連のプロセスを通して、デザイン思考は単なる定型のプロセス消化ではなく、課題を深く掘り下げ、考え、アイデアを創出する反復作業であることを実感しました。各分野の知見や専門家の協働、また異なる視点を持つ作業者同士の意見調整が、最終的な成果に大きく影響すると感じています。

データ・アナリティクス入門

分析に魔法なし!日常に隠れたヒントを探せ

分析とは何を理解するべき? 分析とは何かについて理解しているつもりではあったが、それを言語化することが出来ていないことに気づかされた。また、ライブ授業や動画学習で言及される内容は日常的に行っていることでも、その目的や意図を明確にすることの重要性を改めて認識した。 ライブ授業での学びとは? 【ライブ授業】 分析の基本的な考え方として、「具体的に」かつ「はっきり」とさせることで意思決定に役立てることが非常に印象的だった。これは当たり前のことながら、この理解により方向性や手法を誤らないための指針として機能することがわかった。さらに、棒グラフについては、縦よりも横の方が差を認識しやすいというテクニックが参考になった。分析が第三者に理解され、納得してもらうことが目的であるため、このようなテクニックは非常に有意義であると感じた。 動画学習で気づいたことは? 【動画学習】 「Apple to Apple」のように、分析には条件が等しいものを比較することが重要である一方、世間には意図的に「Apple to Orange」を行っている情報も存在する。この講義では、提示された資料の分析目的や意図を意識することの重要性について学んだ。また、生存者バイアスの考え方も参考になった。目に見えるデータに偏りがちだが、隠れたデータが示す意味について仮説を立てて考えることが重要であると学び、業務に生かしたいと思った。 後輩指導にどう活かす? 後輩の指導や同僚の資料作成の際には、この講義で学んだ考えを意識して取り組みたい。その分析の目的は何なのか、比較対象は正しいのか、隠れたデータが何を意味しているのか。与えられた情報だけでなく、背景を含めて俯瞰する視点を持ちたい。また、自分の行う分析や提案に際しても同様に、目的を持ち、仮説を立て、対象を選定し、隠れた情報に注意を向けることを意識する。 高精度な需要予測を目指すには? 私の担当する製品はSKUが非常に多く、その需要は季節や景気、エンドユーザーの意向によって大きく左右される。また、競合他社の動向にも影響を受け、需要予測が難しい。これまでは自部署の過去データのみを参考に需要予測と予算を立案していたが、これは客観性に欠けていた。今後は業界実績やその時のトピックスも取り入れることで、生存者バイアスを避け、より精度の高い分析を行いたいと考えている。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right