デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

クリティカルシンキング入門

柔軟思考で挑む新しい一歩

思考の整理はどう? 論理的思考や多角的な視点、適切な情報評価の大切さを改めて認識しました。情報の背景を正確に把握し、正しい問いかけができることで、複数の観点から物事を分析する力を養う必要があると感じています。 決断の根拠は? また、これまでの経験や情報に頼るだけでなく、判断の正確性を意識して計画を進めることの重要性を実感しました。一方で、考え込むあまり思考時間が長引き、スピード感が失われるリスクにも注意が必要だと感じています。 実行方法はどうなる? 今後は、リスク分析や問題解決、データ分析において、学んだ手法を活用しながら、必要な情報を漏れなくかつ重複なく整理して対応していくつもりです。思い込みやバイアスを排除するための具体的な方法はまだ確立していませんが、試行錯誤を重ねながら取り組んでいきたいと考えています。

アカウンティング入門

数字だけじゃなく実像を読み解く

財務の見方はどう? 今回の学習で、業種や企業の特性に応じた財務諸表の読み方が変わることを実感しました。単に数字を見るのではなく、それぞれの企業の特徴を踏まえて仮説を立てながら財務諸表に向き合うことで、より深い理解が得られると感じました。 実践で力をつける? 具体的には、CVCの業務において、投資先やアライアンス先企業の財務諸表を詳細に分析し、企業の強みや弱みを把握する手法や、日経新聞などで注目している企業の情報をもとに投資判断や戦略の立案に活かす方法を学びました。また、実際に特定の企業の財務諸表を基に予想を立て、実態との比較検証を行うサイクルを実践することの重要性を再確認しました。さらに、学んだ内容を上司や同僚に報告してフィードバックを受けることで、実践的な知識をさらに深め、業務に生かしていこうという意欲が高まりました。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

データ・アナリティクス入門

原因追求で成果を最大化する方法

分析フレームワークの活用法 分析手法として「What, Where, Why, How」というフレームワークを用いることは非常に参考になりました。つい「How」にばかり注目しがちですが、まずは現状と理想とのギャップを明確にし、周囲との合意を形成しながら進めることが重要だと感じました。 売上未達の原因特定と対策 売上未達の要因を特定し、対策を考える際にも役立ちそうです。これまでは経験や勘に頼りがちでしたが、このフレームワークを行き来しつつ、効果的な打ち手を模索したいと思います。 問題の本質を探るためには? まずはMECEに基づいて、あらゆる要因を考慮しながら問題の本質を探りたいと考えています。また、問題の特定や仮説に関しては、他のチームメンバーと意見交換を行い、精度の高い取り組みとなるよう努めたいと思います。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

クリティカルシンキング入門

論理的プレゼンで成功する秘訣

ピラミッドストラクチャーの効果は? 新規企画の社内説明の際、ピラミッドストラクチャーを意識しました。まず、決裁を取りたい内容をはじめに記載し、その理由付けを行い、さらにその根拠を示しました。この手法を用いることで、論理的に整理されたプレゼンテーション資料を作成できました。 社内説明での活用法は? 社員向け説明の際も同様にこの方法を活用できると感じました。次回の社内説明のプレゼンテーション資料を作成する際も、同じようにピラミッドストラクチャーを意識した設計図を作成する予定です。 情報を伝えるコツは? 各理由付けや根拠の説明スライドについて、1スライド1キーフレーズを基本として、一文を長くしないよう注意しました。これにより、情報が具体的で理解しやすいプレゼンテーションが可能となりました。

クリティカルシンキング入門

イシュー活用で未来を創る

イシューはどう見極める? 問題や課題を解決するには、まずイシューを特定することが大切だと学びました。イシューは、見る角度や考え方によって様々な切り口で設定できるため、目の前にある問題を多角的に分析し、考えうるイシューを洗い出すことが重要です。その上で、状況や環境、優先事項を踏まえ、どのイシューに注力すべきかを見極める必要があると実感しました。 直感に頼らない方法? また、チームの管理職として日々の業務で課題に直面する中、これまでは自身の経験や直感に頼った対応が多く、時としてその効果に限界があることを感じていました。今回の学びを活かし、今後はクリティカルシンキングの手法を用いて、多角的に要因を分析・洗い出し、上司や部下と議論しながら、最も効果的な解決策を選定して実践していきたいと考えています。

データ・アナリティクス入門

仮説が切り拓く多彩な世界

どう仮説を活かす? 仮説を立てることで、物事に対して多角的なアプローチが可能になります。偏った考えに陥らず、さまざまな観点から状況を把握することにより、自分自身の理解を深めるとともに、他者を説得するための材料としても活用できるメリットがあります。例えば、「こうだったら、こうではないか?」や「その逆はどうか?」といった問いかけを行うことで、あらゆる角度から物事を捉える習慣を身につけることができます。 ビッグデータ検証は? ビッグデータを扱う際には、仮説の重要性が特に高まります。決めつけることなく、あらゆる可能性を念頭に置いて分析することで、物事の本質に迫ることができるのです。また、このアプローチは、他者への提案や情報の共有にも役立ち、柔軟な発想を促す大切な手法と言えるでしょう.

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right