データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

クリティカルシンキング入門

分解分析マスター!新たな視点で成長する秘訣

分解の重要性をどのように理解する? 分解の重要性を学ぶことで、物事を理解する際の解像度を高めることができました。具体的な手法としては、全体を定義した上で、MECE(漏れなくダブりなく)になるように確認することが大切です。また、分解の考え方は階層別だけでなく、変数とプロセスの視点でも可能であることを学びました。特にプロセス視点の分解は、これまであまり用いてこなかった分析方法であり、新たな発見でした。 社内活動に分解はどう役立つ? この分解の手法は、社内および顧客向けの活動に活用できると考えています。社内向けでは、社員を職責やキャリア、年齢、配置先などの異なる視点で階層別に分解することで、計画やプロジェクトメンバー選定に役立ちます。また、営業担当者の受注プロセスを分解することで、活動の効率化を図ることが可能です。 分解で顧客分析を進化させるには? 社外向けの活用では、顧客分析やマーケティングに分解の手法を用いることで、企業向けサービスの展開における顧客分類やセグメンテーションがより精密になります。規模や競合他社の視点から顧客を分解し、当社の強みを活かした付加価値の高いサービスを提供することができます。 更なる戦略を立てる方法とは? 例えば、社内では階層別に社員の情報を整理し、部署横断的なプロジェクトの際にはその情報を活用します。営業活動の効率化としては、受注経路を営業提案やリピート注文などのパターンで分解し、それぞれの特徴を分析することで、リソースの最適活用が可能です。 社外では、ターゲット顧客の選定時に規模や分野、競合他社の視点から分析し、強みを発揮できる顧客にアプローチします。このように、分解を活用することで、より効果的な戦略を立てられると考えています。

リーダーシップ・キャリアビジョン入門

人材育成とエンパワメントで変わるリーダーシップ

リーダーの役割とは? WEEK01〜05を通して学んだことについて。 私にとって不足していた視点は、リーダーとしての人材育成の観点でしたが、本講座を受講することで大きな収穫がありました。これまでは、人材育成とは仕事の方法を教えることだと誤解していましたが、変化や競争が激しい現代においては、部下が自ら考え行動できるように促すことが重要であると学びました。その手法としてエンパワメントがあることも理解しました。 フィードバックの役割を知る ライブ授業で学んだ評価のフィードバックの目的も同様に、会社が期待する役割を伝えることで、メンバーのモチベーションを向上させ、自己成長を促すことにあります。これにより、会社に貢献し、成果を上げるチームを作ることがゴールとされています。 モチベーションを高めるには? 能力があるにもかかわらずモチベーションの低いメンバーや、チームの成果に十分貢献できていないメンバーが一定数存在しています。そのような人々に対して、どうアプローチし、チーム全体のレベルを上げていくかについて、これまでの学びを活かしながら考えたいと思います。 適切な仕事の振り方を考える メンバー全体のパワーをフル稼働させるためには、頼りがちなメンバーにばかり仕事を任せるのではなく、敢えて機動力が低いと捉えられているメンバーにも適切な仕事を振ることが重要です。その際、環境要因と適合要因を考慮し、本人にとって少し難易度の高いレベルの仕事を任せてみます。それでも仕事の進捗が期待通りでない場合は、その人が抱えている障害やモチベーションを下げる要因を冷静に分析し、適切なアプローチを取りたいと思います。現在任されている大きなプロジェクトを推進しながら、これらのことを実践してみます。

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

クリティカルシンキング入門

問い続ける学びの軌跡

イシューはどう見極める? まず、イシューを特定するためには、必要なデータを揃え、各データの特徴が明確になる切り口から捉えることが大切だと感じました。その上で、結論を導くためにはMECE(漏れなくダブりなく)の視点で情報を分解し、ロジックツリーを活用して全体の構造を整理していくアプローチが有効だと思います。 本質はどう捉える? また、イシュー自体は疑問形で問いかけを続けることで、その本質や輪郭が浮かび上がってくると実感しました。今、自分たちが本当に考えるべきことは何か、解決策を急ぎすぎずにじっくりと検討する姿勢が重要であると感じています。どの問題を課題として捉えるべきかを問い続けることが、正しいアプローチへとつながるのだと実感しました。 論点はどこにある? さらに、プロジェクトやチーム内の課題、タスクの対応において、この手法は非常に有用だと感じました。担当している作業の中でどこに問題があり、何が論点なのか、またいつまでにどのような解決を図るべきかといった点を明確に把握するためのツールとして活用できると考えています。これにより、チームや上司、クライアントとの認識共有がスムーズになり、問題解決への具体的なステップが見えやすくなるでしょう。 説得力はどう伝える? また、社内研修や新技術の勉強会など、さまざまな場面においても、同じ手法で問題点や論点を整理することができる点に大いに役立つと感じました。考えた道筋を正確に日本語の文章に落とし込み、しっかりとした説明ができるようにすることは、説得力を高める上でも非常に重要です。問題点を混ぜ合わせず、具体的にどこにどのような課題があるのかを順序立てて整理していくことが、確かな解決策を見出すための鍵になると考えています。

データ・アナリティクス入門

朝活で実践!残業削減の挑戦

正解はどこにある? ビジネスにおいて、問題の「正しい」原因を特定するのはほぼ不可能です。ひとつの「正解」を求めるのではなく、さまざまな手法を試す中で気づくポイントがあると感じます。具体的には、What、Where、Whyの順に仮説を絞り込み、Howで実践するというステップを何度も繰り返すことが重要です。 根拠は見えますか? 原因を追及するためには、まず業務や問題をプロセスごとに分解すること。そして、考えられる複数の選択肢を洗い出し、根拠を持って絞り込む作業を行うことで、データに基づいた分析を進め、問題解決の精度を高めていきます。さらに、仮説を試しながらデータを収集し、結果を組み合わせてより良い解決策に導く方法が有効だと考えています。 実践の鍵は何? この考えをもとに、まずは自分自身の業務を一つのプロジェクトとして見立て、実践してみることにしました。具体的には、例に挙げられていた通り、残業時間を削減する取り組みから始めるつもりです。私の業務は3月から徐々に繁忙期に入り、5~6月がピーク。今回は複数の新規プロジェクトも同時進行しているため、学んだ知識を実際に試し、可能であれば周囲のメンバーも巻き込むことを目標としています。 朝の時間は有効? また、グループワークの際にも公言した朝の時間の有効活用を、具体的な行動計画として取り入れていこうと思います。早く出社するとつい業務に取りかかってしまいがちですが、少なくとも30分はこの計画に充てるよう心がけます。これまでなかなか実践できずにいたのですが、今週から出社時はカフェで、在宅時は始業前に、徐々にルーティンを整えつつあります。これからは、朝の時間をうまく活用し、残業削減プロジェクトを推進していく所存です。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

戦略思考入門

ビジネスを制するメカニズムの極意

今週は何を学んだ? 今週の学びについて、以下のように感じました。 ビジネスはゲームか? まず、資本主義社会におけるビジネスは一種の「ゲーム」であり、そこで戦うためには「ルール」である「メカニズム」を学ぶことが重要です。どんな戦略も基本的な原理原則から外れていては意味がないため、このメカニズムを理解することが大切です。例えば、星野リゾートの星野社長が教科書通りの経営を重視されていることにその点が表れています。 変化に対応するには? 次に、時代やビジネス環境の変化によりメカニズムも変わるため、これに対応できる姿勢が求められます。「守」「破」「離」という取り組み姿勢やマインドセットが重要であり、自分で手を動かして試すこと、自ら調べ分析することも必要です。データや街を歩いて集めた情報を把握し、時代や環境変化を考慮し、指数関数的な急激な変化に対応することが競争の基盤となります。 基本をどう生かす? また、過去の知識を有効に活用することが重要です。業務に取り組む際、小難しい手法に飛びつくのではなく、まずは基本を大切にし、先人の知恵に基づいて基本を理解してから行動すべきです。 スピード重視の理由は? スピードを意識することも大切です。「スピードこそが競争のベースになる」と学びました。「スピード感」を持つことが業務改善に役立ちますが、その速度が何のために必要なのかという本質を見失わず、変化に対応しPDCAを回すために用いるべきです。 実践で何を得る? 最後に、自分で手を動かし経験を積むこと、規模の経済性と習熟効果の観点で業務を分析することが今回学んだ重要なポイントです。これらのメカニズムをしっかり理解し、戦略を立てることが求められると思います。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

クリティカルシンキング入門

ピラミッドで磨く伝わる文章

正しい日本語は大事? 分かりやすい文章を書くためには、正しい日本語の使用が大切だと改めて感じました。日本語は主語を省略できるため、意図が伝わりにくくなることがあります。このため、自分が発信する際には、主語などの基本的な要素を明確にするよう心がけています。 手癖を直すには? また、文章作成時に手癖で書いてしまいがちな点を見直す必要を感じています。まずは、文章を書く前にしっかりと考えを整理する時間を取ることで、より論理的で伝わりやすい文章が生まれると思います。 文章整理のコツは? 文章を整理するためのコツとしては、まず主張に沿った適切な理由を選び、浮かんだ理由をグループ分けして整理する方法が有効です。さらに、ピラミッドストラクチャを意識することで、結論、その支柱、理由、そして具体例という流れで思考を深めることができ、読者に伝わりやすい文章が作成できると実感しました。理由を複数挙げ、対比を意識することで、MECEの考え方も活かせると感じています。 難関依頼はどう対処? 今回の学びは、問い合わせメールへの回答にも大いに役立つと考えています。たとえば、お客様から仕様上実現が難しい依頼を受けた際、できない理由を明確に伝えるために、まず伝えたい事項を整理し、結論(依頼は受けられない)、その理由、さらに具体的な根拠という流れで説明する方法を実践していきたいと思います。同様に、チームメンバーの文章チェックにおいても、この手法が有効です。 社内表現を磨くには? 社内での文字コミュニケーションにおいても、ふわっと内容を伝えるのではなく、ピラミッドストラクチャを意識して論理的に整理し、明瞭かつ具体的な表現を心掛けていきたいと考えています。

データ・アナリティクス入門

ナノ単科で見つける解決のヒント

何が問題の始まり? 問題解決には、まず「何が問題か」「どこに問題があるのか」「なぜ問題が生じたのか」「どのように対応するか」というプロセスがあることを学びました。最初に、直面している課題や状況から現状とあるべき姿のギャップを把握し、次に客観的なデータを用いて問題箇所を詳細に特定します。この際、MECEやロジックツリーの手法を用いることで、抜けや重複なく整理することが重要です。さらに、問題の背景にある原因を細かく分解し、真の原因に迫る作業が求められます。最後に、さまざまな案を検討し、現状と理想を照らし合わせながら、適切な対策を導き出していきます。 なぜデータが重複? また、phaseごとに製造原価の算出を実施しており、算出データの取り込みとその活用が行われています。しかし、各phaseで実施している業務自体はほぼ同じ内容でありながら、同一データの取り込みなど、重複して実施している作業が存在しています。理想的には、データベースにphaseごとのデータが一元管理され、必要な時に迅速に利用できる体制が整っているべきです。しかし、現状では必要な時に都度データを作成し、同じ内容を複数回取り込むなど、業務に無駄が生じています。 原因はどう分解? このギャップの原因を明確にするためには、実際の業務フローや工数、業務のインプットとアウトプットの詳細、さらにはシステム上の問題点など、ファクトに基づいた確認が不可欠です。定量的なデータを捉えた上で仮説を立て、MECEやロジックツリーといった手法を活用して問題点を細かく洗い出します。こうした手法により、データの切り口を複数持ち、各要素の影響度を把握してプライオリティを付け、効率的に問題解決へと導くことができます。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

「手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right