データ・アナリティクス入門

相手の心を読む学びの軌跡

相手の意図をどう把握? 報告を求める相手の意図や背景を正確に把握することは、適切なフィードバックや判断を行う上で不可欠です。相手が求める情報や要求の真意を丁寧に確認することで、誤解を防ぎ、必要な情報を正確に得ることができます。 どの視点を取り入れる? また、分析を行う際には、一方的な見方に偏らず、複数の意見や視点を取り入れることが重要です。そうすることで、客観性が向上し、信頼性のある判断が可能になります。結果として、最終的な報告内容も幅広い視野に基づいたものとなり、さまざまな関係者が納得できる結論に導くことができると考えられます。 学びをどう活かす? 今週学んだ「相手の意図や背景の正確な把握」と「多角的な視点の取り入れ」は、クライアント対応やプロジェクト管理に大いに活かすことができます。特に、クライアントの要件定義やプロジェクトの進捗報告の際には、相手の真意を丁寧にヒアリングすることで、期待値のズレを防ぎ、信頼関係の構築につながります。また、チーム内の意思決定においても、メンバーやステークホルダーの多様な意見を取り入れ、客観的な分析を行うことで、より精度の高い提案や解決策を提示できると期待できます。

戦略思考入門

経済性と戦略を駆使した価格交渉の技法

経済性の本質は何? 様々な経済性の本質について学ぶことができました。ビジネスには重要な戦略であり、これからも復習を続けて本質を忘れないよう努めたいと思います。手法は多岐にわたりますが、重要なのはゴールに合致しているかどうか、その手法が本当に効果的かを判断することです。今回の戦略コースでこの点を最も勉強しました。 交渉における工夫は? 現在の業務にどのように当てはめるかのイメージは、企業の規模が大きいため具体的に想像するのが難しいですが、今後の価格交渉の場では、双方にとってのメリットを活かした交渉が必要だと理解しました。例えば、相手側が規模の経済性を活用できるのであれば、こちらは薄利多売を提案し、相手にもメリットを提供することで、結果として両者に利益をもたらすことが可能です。 戦略をどう考える? 現状では具体的なイメージを持てないため、視座を高く持ち、思考することを意識しています。もし自分が社長や役員であったら、どのような切り口で会社の業績を向上させるのか、その戦略と判断の理由は何かを考える必要があります。そのために、日頃から仮説思考力を磨いて、明確なイメージを持てるよう努力していきます。

リーダーシップ・キャリアビジョン入門

キャリア・アンカーで未来を描こう

キャリアの価値観はどう? キャリア・アンカーについて学びました。これは、自分がキャリアを考える上で何を重視しているかという志向を理解するためのものです。自分の志向を客観的に把握することで、仕事に対する気持ちを理解し、前向きに取り組める仕事内容を選ぶことができると考えています。特に若手メンバーには、キャリア・アンカーを活用してもらうことに大きな価値があると思います。 診断シートの使い方は? キャリアの方向性がまだ定まっていないメンバーには、キャリアアンカー診断シートを用いて自身の志向を客観的に判断できるようにしています。ただし、キャリアサバイバルの概念は、会社の現状を考慮すると離職につながる恐れもあるため、注意深く使用する必要があります。 1on1で本音はどう? 1on1では、複数のメンバーにキャリアアンカー診断シートを使って本音を探る取り組みをしています。その結果から、依頼すべき仕事の内容や、避けたほうが良い仕事の内容が見えてくることがあります。しかし、診断結果はあくまで参考として使用し、志向に反する仕事を依頼しなければならない場合もあるため、チーム運営の目的を損なわないように注意しています。

データ・アナリティクス入門

見落としがちな分析のコツ

目的は明確ですか? 目的を早く達成したいという思いから、必要な分析がおろそかになってしまうことがあることを実感しました。その主な原因は、目的そのものの解像度や比較方法の適切さに欠けている点にあると再認識しています。 appletoappleの壁は? 特に、いわゆる「apple to apple」の分析が重要である一方、その実施の難しさを強く感じました。短期間で結果を求める傾向は、判断に必要な深堀りを妨げる要因となっているといえます。 投資判断を見直すべき? また、ファンドの投資判断、景気動向の予測、予算の設定、投資先のモニタリングから得たインサイト、そしてポートフォリオのパフォーマンス検証において、これらの分析手法を活用する意向です。過去の実践において、目的の解像度や視点が十分ではなかった可能性があるため、改めて見直す必要を感じています。 バイアスなく比較するには? このような状況から、どのような方法やツール、そして比較対象を選定すれば、バイアスなく「apple to apple」の比較ができるのか、具体的な事例に基づかない形で皆さんの意見をぜひお聞かせください。

リーダーシップ・キャリアビジョン入門

自分も挑戦!エンパワメントの極意

目標設定ってどう大切? 目標は、相手に正しく伝えることと、ゴールイメージを共有するためのすり合わせが重要だということです。また、相手が納得する形で目標を設定する必要性も感じています。 エンパワメントの適正は? エンパワメントを行う際には、どんな仕事が適しているか、またどんな仕事が適していないかを見極めることが求められます。無闇にすべての仕事を任せるのではなく、各メンバーにとって少しストレッチになる仕事を選んでアサインすることが大切です。 ストレッチの見極めは? ただし、どの仕事がストレッチとなるかは人それぞれ異なるため、各人の経験、能力、性格などを考慮して判断する必要があります。 抱え込みの罠は? 今まで、丸投げを避けるあまり、結果的に自分がすべて抱え込んでいたことに気づきました。今後は、後輩との仕事の分担を考えるときに、エンパワメントに適した仕事とそうでない仕事という視点を取り入れたいと思っています。 後輩依頼の効果は? また、後輩に仕事を依頼する際には、その仕事がどのように成長に繋がるかを、具体的に言葉で伝えられるよう努めたいと考えています。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

データ・アナリティクス入門

データで意思決定を変える!ビジネス革命の鍵

意思決定プロセスを学ぶ意義とは? この講座を受講して、経営における意思決定のプロセスについて深く理解することができました。特に、現実のビジネスシーンをシミュレートしながら戦略を立てることで、理論だけでなく実務への応用が見えてきました。 データ分析の重要性をどう感じた? 最も印象に残ったのは、データ分析の重要性についての講義でした。これまでは直感や経験に頼っていた部分が多かったのですが、客観的なデータを基に判断することで、より確実な結果が得られることを実感しました。また、データの選定や分析方法についても具体的な手法が紹介され、すぐにでも実践に生かせる内容でした。 グループディスカッションの収穫は? さらに、グループディスカッションを通じて、他の受講生との意見交換や視点の違いを知ることができたのも大きな収穫です。同じテーマでも異なる業界や職種の視点を知ることで、新たな発見や気付きがありました。 講座をどれだけ活用できるか? 全体として、非常に実践的で充実した内容の講座でした。今後もこの知識を活用して、より論理的かつ効率的に業務に取り組んでいきたいと思います。

アカウンティング入門

数字が語る経営の物語

利益はどこから生まれる? 企業が生み出す利益は、独自のビジネスアイデアを実行した結果として、損益計算書(PL)に表れていると感じます。そのため、企業や事業内容を理解する際には、各部門の活動や目的が実際に意味を持ち、適切に運営されているかを慎重に見極めることが必要です。最終的には、利益創出の根幹にあるアイデアを正しく把握することが、企業業績を評価する上で重要となります。 アイデアはどう差別化? 具体的には、まず自社がどのような事業を主要な生業としており、どのようなアイデアで他社との差別化を図ろうとしているのかを理解することが大切です。この際、自身の業務に影響を及ぼす費用がどこまで適正に管理されているのかも判断する必要があります。 付加価値はどのように? また、製品に付加価値を付けるための領域を検討する際は、自分の担当する業務が生み出す環境価値にどれだけコストを投じられるかをイメージすることが求められます。そして、損益計算書の中から製品の付加価値が反映されている部分を割り出し、他社のPLと対比することで、より客観的な視点で自社の立ち位置を考察することが可能です。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

戦略思考入門

差別化戦略で広がる可能性

差別化の出発点は何? 差別化を図る際は、まず「競合他社の幅広さ」や「ターゲットとなる顧客」といった前提条件を明確にすることの重要性を再認識しました。大きな差別化戦略であるコストリーダーシップを必ずしも実践する必要はないかもしれませんが、差別化や集中戦略は自社の戦略に十分応用できると感じています。 業界戦略はどう考える? 自身の業界に当てはめると、3つの戦略やVRIO分析といった枠組みは、現在の自分の立場よりも会社全体の戦略部や経営層に近い組織で判断されている印象です。単に方向性を示されるだけでなく、その判断に至る分析結果が説明されることで、より納得しやすくなります。なお、組織単位でVRIO分析を行った場合、その組織の強みは見えても、会社全体の最適な解決策とはならない点には注意が必要です。 どのような工夫がある? また、差別化を考える際に、先に答えを思い浮かべ、その答えを補強するために優位な競合や顧客情報を並べる傾向があります。経験則から出る直感自体は否定しませんが、視野が狭くならないよう、どのように工夫しているのかを考える必要を感じました。

クリティカルシンキング入門

自身のクセを知る:客観視の挑戦

考えのクセ、気付いてる? 自分には考え方のクセがあることを改めて実感しました。具体的には、客観的な視点よりも主観的な考え方に偏ったり、データや数値よりも自分の経験を優先して考えてしまうことに気づくことができました。このクセを直すためには、まず自分自身で常に意識することが大切ですが、それだけでなく、人とのディスカッションの機会を多く作って練習していくことが必要だと感じています。 アンケートはどう読む? 特に顧客アンケートの分析時には、考え方のクセが出てしまわないか注意が必要です。アンケートの自由記述欄では感情移入しやすく、主観的な判断に陥ることがありますが、そうならないように感情に流されず、アンケートから客観的なインサイトを得られるよう分析したいと考えています。 意見交換は必要? まずは自分で現在の課題を意識しながらアンケートを分析します。その後、他人に分析結果を説明して、論理に飛躍がないか、見落としていることがないか確認してもらう機会を設けたいと思います。今後は、多くの人と意見交換を行い、視点の幅を広げることを意識していきたいです。
AIコーチング導線バナー

「判断 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right