データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

データ・アナリティクス入門

比較のレパートリーを増やす意味

分析の目的は何か? 人によって着眼点が大きく異なるため、自分が分析したい目的や伝えたい相手の視点に沿った比較対象を見つけることが非常に重要であると学びました。受講前は、分析手法やデータ収集、整理が重要と考えていましたが、実際には目的設定や比較軸の決定がより重要であると感じました。 営業での活かし方は? この知識は、他者との提案時の競合価格比較や、営業時の他社比較資料の作成に役立つと考えています。特に営業現場では、価格以外の定量的な部分でどれだけ差異をつけられるかが非常に大切です。このような場面で活用していきたいと思います。 比較軸をどう増やす? まずは比較軸のレパートリーを増やすことを目指します。今回の講座で学んだ、特定条件の有無による比較に加え、他の方の意見や視点を積極的に取り入れ、より多くの軸を自分の中に取り込んでいきたいです。そうして得た軸を活用し、より目的に合ったものを選定できるよう努めていきます。

データ・アナリティクス入門

数字の裏に眠る真実を探る

定量分析の意義とは? 定量的に比較できる状態で物事を分析する大切さを実感しました。特に、MECEやロジックツリーといった手法は、情報を漏れや重複なく整理し、階層ごとに把握するのに非常に有用で、正確な分析の基盤となると学びました。 原因背後の要因は? また、従業員の不満などの現象が発生した際、単に直接的な原因と結びつけるのではなく、その背景にある複数の要因を整理することが重要だと考えるようになりました。こうしたアプローチは、複雑な要素が絡み合う状況において、分析の精度を高める上で大いに役立つと思います。 分析の共通点捉える? さらに、人に関する分析の場合も、複数の要素が関わるため、情報が見落とされたり重複したりする恐れがあります。そこで、今回学んだ手法を活用し、分析対象を構成する各要素に注目することで、一見異なる事象にも共通点を見いだしたり、特定の性質に偏っていることに気づけるよう努めたいと感じています。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

目指す姿とのギャップを分析

手法活用はどうする? 5W1Hや層別分解の手法は知識として持っていましたが、実際の業務では目の前の課題にとらわれやすいと感じています。今後は、これらの手法を意識的に取り入れ、より体系的な分析を実施したいと思います。 理想との違いは何? また、分析を行う際には現状とあるべき姿とのマイナス差に注目することが多かったことから、目指す姿とのギャップに関する分析が不足していると感じました。今後は、理想との比較も含め、より実践的な分析に活かしていきたいと考えています。 計測軸は見直すべき? 各部門の工数実績を分析する中で、計測軸をMECEの観点から整備するためにその他の軸も設けています。しかし、全体の一定割合が「その他」に分類されていることから、課題の見落としが発生する可能性があります。このため、計測軸の見直しを行うとともに、現状のあるべき姿との比較だけでなく、目指す姿に対する分析も加えて実施していく所存です。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

データ・アナリティクス入門

仕組みを解読、未来を拓く

ボトルネック、どう見抜く? 採用プロセスをステップごとに区切り、どこにボトルネックがあるのかを特定していく手法が印象的でした。要素を細かく分解し、整理・比較することで、問題の把握と理解が非常にしやすくなった点が魅力的です。 販促効果はどう検証? 自分の勤務先でも、売上に至るまでのプロセスが「申込件数」「審査承認」「成約」などに大別できるため、より細かく検証したいと考えています。さらに、担当する各販売店ごとに分け、各特徴ごとにグループ分けを行って共通点を洗い出すことで、具体的な対策に結びつける取り組みを行いたいと思います。まずは、特定の支店に焦点を当て、その販売店データを集め比較・検討します。その結果、もし明確な特徴が見えてグルーピングが可能となれば、詳細な報告書を作成し、リベートやアローワンスなどの販促策に活かす予定です。また、A/Bテストが可能な場合は、さらなる効果検証にも挑戦したいと考えています。

データ・アナリティクス入門

比較で見える学びの真実

Aの有無はどう影響? 分析の本質は、効果があるかどうかを明確にするために、Aがある場合とない場合を直接比較する点にあります。Aの有無で起こる違いを比較することにより、効果の有無がはっきりと浮かび上がります。 比較対象は何を基準に? また、適切な比較対象の選定も重要です。分析したい要素以外の条件を揃える「Apple to Apple」の視点を持つと同時に、成功事例だけでなく失敗したケースも考慮する「生存バイアス」に注意する必要があります。成功だけに目を向けると、誤った判断につながる恐れがあるためです。 学びを活かすには? 今回の学習で特に印象に残ったのは、「分析は比較なり」という考え方です。仕事の場面、たとえば事業計画で事業の方向性を示す根拠や理由を説明する際、比較の手法が非常に役立つと感じました。今後も自分の意見や判断の根拠を示す際に、この考え方を意識して分析に取り組んでいきたいと思います。

データ・アナリティクス入門

数字で読み解く採用の秘密

データ比較の留意点は? データの比較アプローチには、大きく分けて2つの方法がある。1つは、1つの数字に集約して評価する方法、もう1つはデータをグラフ化して視覚的に捉える方法である。 数字集約の意義は? 数字に集約する方法に関しては、加重平均、幾何平均、標準偏差といった手法があり、今回初めて耳にしたため、新たな数値の捉え方を学べたのが印象的だった。 採用分布は何が見える? また、採用が決定した方と不採用となった方の現年収およびオファー年収の分布を可視化することで、採用決定や辞退に関する傾向が明確になる可能性を感じた。 今後のヒアリングはどう? 今後の選考では、現年収、希望年収、最低希望年収についてヒアリングを実施し、データを着実に蓄積していく。また、他社で採用が決定しながら辞退に至った方からも決定年収についてヒアリングを行い、自社のオファー年収との比較ができるように進めていきたい。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

「比較 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right