データ・アナリティクス入門

現場を解剖!数字と直感のコラボ

見えるギャップは何? データ分析では、目についた情報にとらわれやすく、都合の良い解釈に陥るリスクがあると感じました。しかし、What / Where / Why / Howの切り口で数値同士を比較し、実際の現場で何が起きているのか確認することで、あるべき姿と現状のギャップを明確にし、解決への道筋を意識することが大切だと学びました。 KPI設定の真意は? また、サイト分析におけるKPI設定では、ロジックツリーの考え方を活用して全体を俯瞰し、各階層に分解するMECEを意識したアプローチに新たな気づきを得ました。こうした手法は、課題解決や売上、集客の分析においても非常に有用だと考えています。 具体分析の切り口は? さらに、現在取り組んでいるECサイトのデータ分析では、感度の良い切り口を増やし、より具体的な分析を行いたいと思います。クライアントのサイト課題をあぶり出し、ロジックツリーに落とし込むことで、強化すべきポイントを整理する作業に役立てていくつもりです。 今後の施策は? 引き続き、現場の状況確認を踏まえながら、What / Where / Why / Howの視点とMECEを意識して分析を進め、課題解決に向けた具体的な施策を模索していきます。

データ・アナリティクス入門

多様な視点から問題解決を探る喜び

問題解決の多様な切り口とは? 問題解決にはさまざまな切り口があることを学びました。あるお題に対して「これ一択」と思いがちですが、見方や角度を変えることで多くの切り口が存在することが分かりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して要因分析を行うことの重要性も理解しました。これまでの業務でも要因分析を行う際、多くの漏れや重複があると感じていたため、この手法は非常に有益だと思います。 学生の満足度はどう測る? 具体例として、大学に入学してきた学生の質と卒業時の満足度を比較する際にMECEの原則を使えるかもしれないと考えました。大学での4年間、学生は学業やクラブ活動などを通じて多くの経験をします。これらの経験を漏れなくパターン化することで、従来とは異なる分析結果が得られるのではないかと思います。 学生の実態把握の重要性 多くの学生にヒヤリングを行い、どのような学生生活を送っているのか現状を把握したいと考えています。大学職員として普段接するのは、多くが優秀な学生か、その逆の学生に偏っている現状があります。その中間層の普通の学生たちの実態を把握することが、重要であると感じています。

アカウンティング入門

未来へのヒントをBSから探る

BS調達はどう見直す? BSの調達方法については、提供価値を実現するために必要な借入は、単なる負債ではなく適切な選択であると考えています。一方で、無借金にこだわると、提供価値が損なわれる可能性があるため、PLだけでなくBSも投資計画の検討に取り入れる必要があります。 業界ごとのBS違いは? BSは各業界で特徴が異なり、古くからある産業では負債が相対的に大きくなる傾向がありますが、SaaSなど比較的新しい産業では、純資産が大きく、負債が少なくなる傾向にあります。この違いは、PLの当期純利益がBSの純資産の利益余剰金に反映され、株主への配当など企業の経営に直接影響を与えるため、重要な視点です。 戦略策定はどう考える? 私自身は、担当部門の投資計画策定の際、過去・現在・未来のBSを総合的に分析し、提供価値に合致する事業戦略を描くことを心がけています。具体的には、過去のBSから傾向や示唆を読み取り、そこから将来的に求められるBSをシミュレーションする手法を実践しています。 資金調達の新視点は? また、新しい業界においては、返済が必要な借入による負債ではなく、資金調達によって純資産を増加させる方法が望ましいのかどうか、改めて考えさせられる内容でした。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

アカウンティング入門

数字で読み解く経営の真髄

P/L分析から何を知る? P/Lの分析から、その企業がどのような価値提供を重視しているかを類推する手法を学びました。類似する業種や時系列による比較も有効であり、全体規模を見るとともに、特に営業利益や最終利益が売上高に対してどの程度の割合を占めているかに注目する重要性を改めて認識しました。また、サービス業では売上原価率がおおむね8割前後であることや、販管費が製造業より高い割合を占める点、研究開発費が販管費に含まれているという事実も理解しました。 価格設定の基準は? 起業時のサービスの価格設定や利益率を決める際、類似サービスを展開する企業のP/Lは非常に参考になると感じました。さらに、自身が提供するサービスの価値や、その価値を創出するために必要なコストや労力を整理し、原価や一般管理費として具体的に算出する作業の重要性を学びました。 情報検索はどうする? しかし、他社のP/Lを参考にしたいと思いながらも、ネット上では大企業の事例ばかりが見つかるという現状に直面しています。皆さんはどのような方法で情報を探されているのでしょうか。また、販管費や一般管理費をさらに細かく分類した項目を記載したP/Lが存在するのか、情報検索に行き詰まりを感じています。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

データ・アナリティクス入門

数値とABテストで見極める新戦略

数値化の効果はどう? 実践演習では、複数案を選択する際に「数値化」する手法を学びました。自分なりに言語化して記載する中で、他者に説明する際にもこの数値化が有効であると実感しました。 ABテストって何? また、動画学習ではABテストについて学びました。これまでなんとなく比較手法を採用していたものの、今後は期間や状況を意識し、差異の少ない環境で比較する重要性を再確認しました。 商品の魅力は伝え方次第? 業務面では、スーパーマーケット等へ食品を流通させる中で、商品の訴求ポイントが多数存在するため、どの情報をどのように伝えるか迷うことが多くあります。例えば、ブランドの特徴や原料産地、有機、減塩、糖質オフ、カロリーなど、様々な訴求要素がある中、限られた紙面スペースやウェブバナーでどの情報を選ぶか判断に苦慮しています。そこで、今回学んだABテストと数値化の手法を活用し、客観的に効果の高い訴求方法を選定していきたいと考えています。 評価方法はどう設定? なお、数値化にあたっては、個人の考えやバイアスが影響しやすい面もあり、できるだけ公平かつ客観的に評価できる方法やコツがあれば、今後の業務改善に役立てたいと思います。

データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

平均を超えた数字の物語

分析の精度をどう? 普段の分析では平均値に頼ることが多いですが、データのばらつきを十分に表現できない点が印象に残りました。標準偏差はこのばらつきを把握するための指標であり、分析の精度を高めるためにぜひ取り入れるべきだと感じています。業務ではすでにビジュアル化の手法を用いていますが、今後は標準偏差も活用していきたいと考えています。 採用分析の狙いは? 採用状況の分析については、平均値だけではなく標準偏差を用いることで、応募者数や面接評価の個々のばらつきをしっかりと捉え、より詳細な傾向を分析する計画です。これにより、採用プロセスの安定性や特定の職種や部門における採用難易度の変動を明確に把握することが可能になります。その結果、より効果的な採用戦略の策定やリソース配分の最適化へとつなげることを目指しています。 計算環境はどう? 現在は、最新の採用データを整理し、Excelなどのツールを用いて標準偏差を計算できるような環境を整えています。主要な指標である応募者数や面接評価の標準偏差を算出し、比較分析を実施する予定です。こうした分析結果を視覚化して定期報告に組み込むことで、より深い洞察を得られる体制を構築していきます。

「比較 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right