データ・アナリティクス入門

現場で磨く仮説思考の実践

具体的演習の魅力は? 総合演習の課題解決は非常に具体的で、これまでの演習と比べると、より深い検討が求められる良い機会となりました。 フレームワーク使用法は? 仮説を考えるプロセスでは、思考の幅を広げるためにフレームワークの活用や対概念の取り入れ方が提示されました。しかし、現時点ではフレームワークの使いこなしが十分ではないと感じ、今後の日々の活動の中で意識的に取り入れていきたいと思います。 A/Bテストの効果は? また、A/Bテストを活用して早期にアクションを起こすことで、得られたデータをもとに仮説をさらに精緻化する取り組みも印象的でした。Web関連の利用場面では活用しやすい一方、現業務にすぐ生かすことは難しいと感じたため、二つの選択肢の中から比較しながら適した選択を見つけるアプローチを取り入れたいです。 問題解決の流れは? 問題解決については、問題に至るまでの流れをプロセスに分解し、どの段階に原因があるのかを明らかにする手法が有効だと実感しました。解決策を検討する際にも、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性が伝わってきました。 現場実行のコツは? 現在の業務では、大規模なデータ分析による示唆を提示するよりも、現場に近いところですぐに施策を実行することが求められていますが、仮説思考に基づいて複数の仮説を立てた上で行動に移すプロセスを意識的に実践していきたいと考えています。

データ・アナリティクス入門

小さな挑戦が未来を創る

問題の原因は何? 問題を特定する際には、まずプロセスごとに整理して考え、複数の案に対して各々の確度を点数化して比較検討する手法が有効だと学びました。また、仮説検証のために小さいサイクルを繰り返すことで、実際の運用の中で迅速に改善策を試すことができると感じています。過去に広告のABテストを実施した経験から、構造を改めて理解することもできました。 チーム士気は上がる? 実務者はこのような小さいサイクルの繰り返しによる検証の重要性を十分に理解している印象ですが、一方で意思決定者はサイクルの大きさに注目しがちだと感じました。今回の学びを社内で明確に説明することができれば、チーム全体の士気向上にもつながるのではないかと考えています。 売上の謎を解く? たとえば、自社ECサイトのアクセス解析において、「特定商品の売上が伸び悩んでいる一方で、検索数は増加している」という状況が見受けられた際は、売上の構成要素や購入プロセスを分解して整理しました。その上で構築した仮説をすぐに検証し、実践することで問題解決に取り組んでいます。 効果はどう確認? また、繁忙期前にECサイトでセールを実施する際、消費行動を促すフレーズの効果を明確にするため、あらかじめ広告のABテストを行いました。テストの結果をもとに効果の高いフレーズを特定し、繁忙期のセールページに反映させることで、より成果を上げる工夫をしています。

データ・アナリティクス入門

比較思考で紐解く学びの極意

分析の意味は何? 「分析は比較なり」という言葉は、普段何気なく耳にするものですが、今回改めてその意味を強く感じました。データ分析において、必要な情報を集めることに注力し過ぎるあまり、単にデータを並べただけで満足してしまい、見る人によっては分析結果の捉え方に差が生じる場面があったと実感しています。動画学習では、適切な比較対象を選ぶことの重要性にも触れ、データを揃える行為は無駄ではないものの、分析の目的や見せ方を意識しなければ本来の意味での分析にならないということを認識しました。 物流の選定はどう見直す? この考え方は、物流部門における利用業者の選定や見直しにも応用できると感じます。たとえば、ある条件がある場合とない場合で、一律運賃が設定される荷主とそうでない荷主の運賃総額を比較する手法が考えられます。 大手と中小の差は? また、単純に大手業者と中小業者を料金面で比較するのではなく、企業の規模や対応する配送範囲が同様である業者同士で運賃を比較することが、より適切な分析につながると理解しました。 比較対象の妥当性は? さらに、自分が揃えたデータが本当に比較に適したものかどうか、常に振り返りを行うことが大切です。普段利用している輸送業者に注目し、過去の実績が明確な業者だけを比較対象にしている現状を見直し、新たな業者や新しい地区の業者も検討することで、より多角的な視点を持つことができると感じました。

データ・アナリティクス入門

データ分析力で未来を切り拓く

比較で何を探る? 「分析とは比較なり」という言葉が示すように、分析を行う際には、条件を整えて比較し仮説を立てることが重要です。この手法は、日常的にデータを扱う作業の中で非常に役立っています。例えば、全国推奨品になった製品のシェアが推奨される前後でどの程度伸びているのか、値下げ要求に応じた場合に売上がコストダウンのインパクト以上に増加したかどうかなどの質問です。 目的と条件はどう? 分析を始める前に、分析の目的とデータの条件がしっかりと整っているかを確認します。目的がはっきりしていなければ、分析結果は曖昧になり、有益ではなくなってしまいます。また、「生存者バイアス」という思考に陥らないように、成功体験だけでなく失敗からも学ぶ意識を持ち続けたいと思います。たとえば、競合との製品コンペに勝つためには過去の成功事例から学ぶだけでなく、敗北したケースの反省点を検討し、どこが競合よりも劣っていたのかを追求していくことが重要です。 データの見せ方は? さらに、データの見せ方も大切です。数字やパーセンテージで示すべきか、どのようなグラフを使用するかを考え、視覚的に訴える効果的な方法を選択することが求められます。こうした分析の技法や思考法は、データを扱う日々の作業の中で重要な役割を果たします。ファクトに基づいた正確な分析結果を出し、それを適切に伝えられるように努めていきたいと思います。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

クリティカルシンキング入門

見えるから伝わる!視覚資料のヒント

視覚手法は有効? 相手に何を伝えたいのかを整理した上で、グラフ化や文字のフォント、色づかいといった視覚的手法を活用することの重要性を再認識しました。これまで日常のプレゼンテーションで実施してきた手法も、実際にその効果を見直す機会となりました。グラフの種類によっては伝えたい内容がより効果的に伝わるものもあれば、逆に伝わりにくくなってしまう場合もあるのだと感じました。また、文字の装飾についても、その効果を意識して丁寧に活用することで、より分かりやすい表現が可能になると実感しました。 会議資料はどうする? 今後は、事業戦略会議資料や事業計画のスライドにこれらの知見を活かしていきたいと考えています。会議資料では、期の初めから時間経過に伴い売上や利益率が変化していく様子を示し、伝えたいポイントを明確に強調することで、資料全体がより分かりやすくなると思います。事業計画においては、過年度との比較や現状分析から次年度以降に注力すべき分野、来期の目標など、視覚的に理解しやすい丁寧な資料作りを心掛けていきたいです。 改善点は何だろう? また、これまで作成してきた資料を振り返り、改善点を見つけ出すことも重要です。伝えたい内容に沿った順序でグラフや図表を配置し、強調すべき箇所には適切な装飾を施すことで、視覚的な訴求力を高め、読みやすく最後まで関心を引き続けられる資料にしていきたいと思います。

データ・アナリティクス入門

目的で広がる分析の世界

分析の目的は何? 分析は、目的に応じた比較作業として位置づけています。分析の際には、まず目的を明確にし、その目的に沿った仮説検証に必要な項目とデータを収集、分類します。そして、比較対象や基準を設定することで、結果が意思決定につながるよう意識しています。 データの見せ方は? また、データの性質に合わせた見せ方を心がけることが大切です。データ分析で明らかにしたい事柄に最適な表現方法を選ぶことで、無駄なデータ加工を避け、例えば帰還した機体を基に無駄のない結論を導くといった論拠のあるアプローチが可能になります。 仮説と経験はどう関係する? 実際、Webサイトのアクセス解析を日常的に行っているため、データから仮説を立てる経験はあります。しかしながら、売上向上や認知拡大、新規ユーザの獲得といった本来の目的達成のために、どの分析手法を用いるべきか、その根拠となるデータ解析に結びつけることが必要です。 追跡設定の必要は? さらに、解析ツールにおけるデフォルト設定以外のトラッキングに関しては、どのデータを収集すべきかが不明瞭になりがちです。よって、まず目的をはっきりさせ、必要な要素を明確に把握することを心がけています。また、取得できるデータの切り出し方次第で得られるインサイトは異なるため、どのデータがあればどのような推論が可能になるかを意識し、分析スキルの向上を目指しています。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

データ・アナリティクス入門

手を動かす実践学習の軌跡

分析手法をどう感じる? 受講を通して、問題解決プロセスに沿いながら分析を進める手法が非常に印象的でした。目的や仮説の根拠となるデータの見せ方が多様で、読み手や主張によって使い分ける工夫が大切であると実感しました。また、比較を行う際に明確な軸を定めることで、より論理的な分析が可能になる点も学びました。 成果をどう評価する? 受講生の皆さんのアウトプットの質の高さも印象に残りました。各自が多角的に課題を分析し、仕事にどう反映させるかを常に意識している姿が刺激的でした。グラフの作成方法やデータ加工、プレゼンテーション資料の作成など、実際に手を動かしながら進める重要性を改めて認識することができました。学んだ内容を自分なりにアウトプットすることで、知識が確かなスキルへと結びつくと感じました。 業務改善のカギは? また、既存業務にデータ分析の機会が少ない中、自ら課題を見つけ改善していくためのプロセスを学んだことも大きな収穫です。まず、チーム内で起こり得る問題やその可能性を探り、起こっている原因を特定するために必要なデータを洗い出します。続いて、データの収集・加工を行い、仮定が正しいか、また改善のインパクトがあるかを確認しながら分析を繰り返す。このプロセスを上司やメンバーとレビューすることで、納得感のある提案へと昇華させる流れは、今後の業務改善に大いに役立つと感じています。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

「比較 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right