データ・アナリティクス入門

数字で読み解く成長ストーリー

代表値で分かる? データの状況を評価するためには、単純平均、加重平均、幾何平均といった代表値や中央値が用いられます。平均値は計算が簡単で直感的に理解しやすい一方、極端な値(外れ値)の影響を受けやすいという面があります。そのため、データのばらつきを示す標準偏差と併せて確認することが重要です。 小規模店舗見えてる? 複数の店舗の売上やイベントの各店舗での来場者数などを平均値だけで評価すると、店舗ごとの規模や条件の違いから、小規模な店舗や一時的な変化を見落とす可能性があります。こうした場合、標準偏差や中央値などの指標を追加することで、より詳細な状況把握が可能となります。 分析体制整える? レポート作成においては、平均に加え中央値、最頻値、標準偏差など複数の代表値やばらつきの指標を数値化することで、微細な変化に気づきやすい分析体制を整えることが求められます。さらに、ヒストグラムや折れ線グラフ、棒グラフなどを用いて直感的に理解できる分析を行い、Lookerstudioやスプレッドシートでテンプレートをあらかじめ用意しておくと、作業の効率化にも寄与します。

データ・アナリティクス入門

数字に潜む新発見と未来への一歩

平均値の使い方は? 単純平均だけで判断すると、外れ値の影響でデータの見誤りが発生する可能性があることに気づきました。これに対して、加重平均や幾何平均についてはこれまで自分自身で使った経験がなく、今後習得していきたいと考えています。これまで、適材適所の数値の出し方をあまり意識していなかったという反省もあります。 データ分析はどう? セミナーの申込者数やWebからのコンバージョンの分析において、年商別や案件化金額などのデータを、散らばりや加重平均、幾何平均を取り入れて比較分析したいと考えています。具体的には、同じソリューションのセミナー同士や異なるソリューション間の比較、時期を分けた比較、Webとセミナーでのリードの比較など、さまざまな切り口で分析を行いたいと思います。 比較検討の進め方は? まずは、参加者が多く、分析しやすい直近のセミナーを対象に、年商別の申込者数や過去のセミナー参加数を、前回同じテーマで実施したセミナーと比較してどのような変化があるかを検討する予定です。その結果を踏まえ、他のソリューションのセミナー分析にも展開していく狙いです。

データ・アナリティクス入門

比較思考がひらく未来への扉

目的と仮説はどう? WEEK1で学んだ内容を振り返る中で、データ分析は「比較」を基本として行われると再認識しました。まず、目的を明確に定め、自分なりの仮説を立てた上で、必要なデータを収集し、分析を実施することで、目標達成のための示唆や考察が導き出されることが理解できました。 解決手順はどう? 問題解決の過程では、「What, Where, Why, How」といった基本ステップを踏むことが大切ですが、これに加えてロジックツリーやMECE、3Cや4Pといったフレームワークを活用することで、より効果的に仮説が立てられると感じました。 データから何得る? また、数字や数式での集約やグラフによる可視化が分析をサポートし、実数と率の両面からのアプローチが有効であると学びました。同時に、既存のデータだけに頼るのではなく、必要なデータを自ら収集する努力と、都合の良いデータに偏らない分析の姿勢が重要だと痛感しました。実施前後の比較を通じて施策の効果検証を行う場面も多く、今期の採用活動の変革を始めとした各施策の評価に、この学びを活かしていきたいと考えています。

アカウンティング入門

イメージと数字で探る企業の真実

どうして企業は違う? 業種や企業の考え方によって、適切な範囲内で変化するという点が一番の学びでした。特にオリエンタルランドでは、価値創出のために人件費が売上原価と位置付けられている点が非常に新鮮に感じられました。また、すぐに財務諸表を見るのではなく、まずその企業の特性を思い浮かべた上で財務諸表をイメージし、実際の数字と照らし合わせることで、自分なりの仮説が見えてくる点に学びの深さを感じました。 業務で何を実践? 今後は、①自分の担当業務においてこの手法を活用したり、日経新聞などで気になる企業について詳細に調査する際に役立てたいと考えています。②また、自社業務で様々な企業の財務諸表を分析する機会に備え、その知識をしっかりと身につけたいと思います。 試行はどう進める? 具体的には、まずある企業を選び、その企業の財務諸表を自分なりに予想します。その上で実際の数値を確認し、仮説の検証を行うというサイクルを繰り返していく予定です。その結果を単に自分の中に留めるのではなく、何かしらの形でアウトプットすることでより実践的な学びに結び付けたいと考えています。

データ・アナリティクス入門

実践が磨くデータ分析の極意

分析の目的は? データ分析の基本は、正確な手法の選択とアウトプットの工夫にあります。まずは分析の目的をはっきりさせ、整理すべき具体的な要素をまとめることで、比較対象や評価基準を設定することが重要です。また、グラフの種類やデータの加工など、第三者が見ても客観的な判断ができるような見せ方を工夫する点にも留意しました。 マネージャーとの調整は? ヘルスケア領域のコンサルティング業務においては、実際に分析に取り掛かる前に、マネージャーとの認識統一が欠かせません。分析する項目の選定や、加工の必要性、さらには比較対象や基準、定義の設定について事前の調整を行うことで、適切な手法を選択できると実感しました。 数字の示唆は? また、定量的なデータ分析は単に数値を示すだけでなく、その数値からどのような示唆を得るかが大切です。データ分析の結果をマネージャーに提出する前に、伝えたいメッセージを明確にすることの重要性を理解し、背景や目的の整理、現状分析、課題抽出、解決策という業務プロセス全体の中で、正しいデータ分析方法とそのアウトプットが不可欠であると再認識しました。

データ・アナリティクス入門

仮説検証で未来を切り拓く一歩

なぜ仮説検証が必要? 今回の振り返りを通じ、まず仮説検証の重要性を再認識しました。数字を単に眺めるだけではなく、要素ごとに分解し、さまざまな仮説を立てながらデータを検証のツールとして活用する方法が有効だと感じました。また、比較を意識した分析を行うために、率や代表値を用いる手法が非常に効果的であるという考えにも改めて気づかされました。 実績把握で何が変わる? これらの学びは、月次実績の把握や事業計画の検討にも応用できます。過去の実績に基づいて仮説を立て、検証を重ねることで、次年度への具体的な打ち手が明確になっていくと実感しました。前年同月比や前年同期比を活用する手法も、現業務において引き続き継続し、より深い分析に結びつけたいと考えています。 復習と共有で成長は? また、ナノ単科の画面が見られなくなる前に、回帰分析や代表値の部分をしっかり復習し、自分の知識として定着させることが必要だと感じました。さらに、アウトプットの重要性を痛感したため、自ら立てた仮説や検証結果を周囲と共有し、意見を取り入れることで自身の成長を一層促進していきたいと思います。

アカウンティング入門

財務三表で感じる経営の醍醐味

PLやBSの連携は? 会社の稼ぐ力を示すPL、経営スタイルを表すBS、そして会社の血液ともいえるCF。それぞれがどのように連携しているのかを理解できたと実感しています。会社経営とは、何に投資し、どの資産を活用し、どのような価値を提供し、いかに利益を上げるかという視点でとらえると、財務三表はそれぞれ企業活動の成績表といえると感じました。また、業種の違いはあるものの、経営者の意思決定次第でPL、BS、CFは大きく変動するため、経営の面白さを強く味わうことができました。 数字分析の意味は? さらに、お客様の事業を数字でとらえ、どのような意思決定の特徴があるのか、強みと弱み、課題と価値の所在は何かを分析することの重要性を学びました。こうした事実を正しく把握するために、財務知識は最低限必要であり、私自身も独自の付加価値をつけた提案ができるようになりたいと考えています。 決算発表は成長する? 今後、さまざまな会社の決算発表を通じて、数字の背景にある要因や成長戦略を読み解く力を養い、多様なパターンを自分の頭の中にデータベースとして蓄積していくつもりです。

データ・アナリティクス入門

思考プロセスで本質に迫る

プロセスの意味は? 今週は、一連の思考プロセスに沿って問題解決のステップを学びました。それぞれのステップで重要な点を復習する機会をいただき、事象を把握する際に、すぐに手法に飛びつくのではなく、しっかりとプロセスを踏むことが実は近道であると実感しました。迅速に本質へ近づくため、その手間を惜しまない姿勢を大切にしたいと感じています。 徹底の課題は? また、問題解決策にたどり着き「これを徹底しよう」と意気込んだ場面でも、大規模な職場においては徹底が困難であるという新たな課題に直面しました。この単科で学んだ内容を活かすためには、その後の徹底方法、すなわちどのようにして人が動くのかという視点も欠かせないと考えています。思考プロセスは数字の分析だけでなく、さまざまな状況に応用できる点が魅力的だと改めて感じました。 本質を追うには? 徹底ができていない現状(What)に対して、なぜ徹底できないのか(Why)をインタビューなどを通して探ることで、新たな気づきを得たいと思います。今後も、この思考プロセスを駆使し、問題の本質を追究していきたいと考えています。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

リーダーシップ・キャリアビジョン入門

リーダーの核を育む日々

リーダー像はどう変わる? Week1で記述した「ありたいリーダー像」を再確認したところ、記された内容自体は大きく変わっていないように感じます。しかし、学習を終えた今、どのような行動や考え方がリーダー像に近づくために必要かという基礎が固まった点で、大きな成長があったと感じています。以前より、影響の輪を自分から積極的に発信していく自信がつきました。 行動計画はどう描く? また、今後の具体的な行動として、「目標設定時の自分の納得感を高める」期間には、Plan発表の際に十分な時間を確保し、様々な角度から納得できるプロセスを探り、理由付けと数値目標を立てることに注力したいと思います。 振り返りは何を見る? さらに、「振り返りの時間を取る」ため、手持ちの仕事が完了したタイミングで、仕事の結果を数字で表現し、成功点と改善点の両方を検証する時間を設けます。 数値評価はどう進む? 具体的には、5月以降の期におけるPlan作成時に十分な時間を確保し、4月までに実施した業務についても振り返りを行い、具体的な数値で表現して評価してみる考えです。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

クリティカルシンキング入門

多角的視点が解くデータの謎

多角的視点はどう? データを見る際には、様々な切り口を持つことの重要性を改めて実感しました。切り口のレパートリーが少ないと、誤った解釈に導かれる恐れがあるため、一つのデータに対して複数の視点から分解することが、正確な解釈へとつながると感じています. 応募増加の理由は? 具体的には、月間の採用進捗を確認する場面で、前月から応募が増加した場合、属性・性別・年齢などの観点でデータを分けて検証すれば、その増加の要因がより明確になると思います。こうした実践的なアプローチが、日常業務における分析力向上に役立つと考えています. 切り口は変える? また、普段からデータを見る機会が多いこともあり、いつもより2パターンほど違った切り口で検討することを意識していきたいと思います。これにより、単に数字を見るだけでなく、背景にある要因や意味まで理解する助けとなり、分析の幅を広げることができると思います. 深い洞察は得られる? このような進め方を継続することで、データの分解に対するレパートリーをさらに充実させ、より深い洞察を得られるよう努めていきたいです.

「数字」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right