データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

クリティカルシンキング入門

学びの可視化で発見する新たな自分

主張の整理は? 主語と述語を意識して整理し、可視化することで主張とその理由が明確になると感じました。これは、日本語では抜かれがちな部分ですが、自身や伝えたい側にとっても非常に有益です。さらに、今回の学習を通じて、自分が誤った認識を持っている領域があることを知りました。この分野が苦手であることも発見したため、今後も定期的に復習を行いたいと思いました。 変化対応のコツは? 新たなプロジェクトの推進や既存の内容の変更を行う際、以下の点が重要だと感じています。まずは、始めることで得られるメリット。そして、業務負担の変化などを整理し伝えることで、提案が採用されやすくなるのではないかと考えています。 伝え方の確認は? 伝えたいことや相談事がある時には、小さなことでも図式して頭の中を整理することが大切です。頭の中だけで描くと、仕分けが上手くいかない可能性があるためです。可視化をきちんと行うことの重要性を実感しました。また、伝える前に一度、どのように伝えるべきか言葉にして確認することで、構造に誤りがあった場合でも修正できると感じました。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

データ・アナリティクス入門

データ分析で見つけたWEB改善の秘密

WEBマーケで目指す成果とは? 私の業務はメーカーのWEBマーケティングに関するものであり、そのミッションは新規ユーザーをWEBページに集め、営業に引き渡すことで売上に貢献することです。具体的には、WEBページの閲覧状況を分析し、サイトの改善に役立てています。分析するデータには閲覧URL、流入キーワード、お問い合わせフォーム遷移率、その後の商談化率、売上金額などがあります。 分析の目的設定の重要性 分析においては、まず目的を明確にし、その目的を達成するために必要なデータの選定とどのように加工・分析するかを検討します。やみくもにデータを分析しても意味がないため、仮説を立てた上で分析を行うことが重要です。 業務スキルをどう活かす? 学んだことを業務に活かすために、まずは分析のフレームワークを学び、それを活用できるスキルを身につけました。グループワークを通じて、わかりやすく伝えるスキルも向上させ、学習を業務に積極的にアウトプットしています。これらのスキルと知識を活用して、より良いWEBサイトの作成と改善を目指しています。

データ・アナリティクス入門

仮説で切り拓く成長の道しるべ

ゴール設定はどう? 分析のゴール設定を常に意識し、単にデータ分析が目的化しないように気をつけます。仮説を立て、比較を通じてゴールにたどり着くプロセスを重視し、適切なデータの平均などの指標を選んでいく必要性を感じています。また、比較箇所以外の条件を統一しながら原因箇所を明確に捉えることも大切だと考えています。 複雑データはどう扱う? 人事業務では、多様な角度からのデータが関わるため、分析が目的となって袋小路に入ることが多かったと振り返ります。さまざまな要素が複雑に絡み合って事象が発生している点を念頭に置きつつ、常に分析のゴールを設定しそのゴールに向かって捉え続けること、そして仮説を立てる力を養うことを今後の課題にしたいと思います。 低評価の理由は? まずはエンゲージメント向上を目的とした取り組みから始め、低い評価要素の抽出や、それぞれの項目に対して低評価の理由について仮説を立てながら分析を進めていきたいと考えています。さらに、数値の高い部署と低い部署を比較することで、より具体的かつ実践的な分析を行う方針です。

アカウンティング入門

P/LとB/Sで学ぶ実践的経営分析

比較モデルの新たな発見とは? 実在の企業をモデルにした比較は、これまでのカフェ比較に比べて非常にリアリティがあり、面白く取り組むことができました。ただ、P/L(損益計算書)とB/S(貸借対照表)を別々の企業で行うのではなく、同じ企業のP/LとB/Sを同時に見ることで何か傾向を学べれば、より良かったと思います。 P/L活用の具体的方法は? 直近では、自社全体での活用は大きすぎるため、まずは自部門のP/Lを閲覧する際に今回の学びを活かしていきたいです。自部門のP/Lは管理会計であり、財務会計ではないので、今回学習したP/Lと構造が異なります。そこで、一度学習したP/Lに合うように成型し、数字の管理に慣れていきたいと考えています。 数字管理の重要性とは? 現在、私はまだP/Lを直接管理したり、それを基に分析を行ったり、分析を立案する立場にはいませんが、いつでもその業務に携われるように数字の管理に慣れておくことが大切です。他部門と比較して何が違うのかを分析し、必要な改善箇所と具体的な対策を立案していきたいと思います。

データ・アナリティクス入門

仮説実証で未来を切り拓く

どうやって目的を決める? 目的や目標を明確に定めた上で、必要な判断を下すための着眼点を学ぶことができました。事象におけるステップや因果関係を意識し、まずは分析の仮説を立て、その後実際のデータ解析を通じて検証しながら、問題を絞り込む手法が有効であると理解しました。 どう検証すれば確実? 問題解決型の業務においては、事前に予想される因果関係を各種ツールを用いて整理し、データで検証することで、より正確な判断を短時間で行うことが可能だと感じています。一方、課題創造型の業務では、目的と背景を基にツールなどを活用して仮説を組み立て、実践と検証を繰り返すことで、より良い業務実施につなげる方法があると考えます。 どう計画を固める? 改めて、まずはしっかりと目的と目標を決めることが重要だと感じました。関係者を巻き込み、十分な時間をかけて納得のいくプランを作り上げ、その上で複数の仮説を立てる必要があります。また、各種分析手法を実践する中で自分のスキルと経験を徐々に深め、より多角的な判断ができるようになりたいと考えています。

クリティカルシンキング入門

問いかけで解決力アップ!業務活用術

どうして問いに変える? イシューは問いの形にするのが有効だと学びました。問いの形にすると、脳が本能的に答えを探し始めるからです。また、同じデータを見ても、立場が異なれば立てるイシューも変化することがあります。そのため、イシューを立てること、そしてそれを抑え続け共有することが重要です。 業務で活用している? 普段の業務においては、経営層向けの資料や社内外の教育資料、会議資料の作成時にこの学びを活用しています。特にデータ解析時には、データを丁寧に分解して分析し、視覚的にも見やすくグラフ化することを心掛けています。文章作成やチェック時、そして会議のファシリテーションにおいても、イシューを立て、抑え続け、イシューに沿った答えになっているかを常に確認しています。 誰の視点で考える? さらに、自分自身に対して批判的な視点だけでなく、場合に応じて経営層の目線で考えてみることも意識しています。チームで仕事を行う際や会議のファシリテーションの場面では、イシューの共有を必ず行い、全員で目線を合わせることを心掛けています。

データ・アナリティクス入門

効率的な資料作成で業務改善!

分析を効果的にする方法は? 分析の本質は比較にあります。具体的な要素を整理し、比較対象や基準を設けて、きちんと比較することが重要です。また、条件がそろっていない場合には想像力を働かせて補完することも必要です。 資料作成の時間短縮には? 目的を理解して分析を行うことが大切です。販売計画の部署にいる後輩たちに対して、分析の基本を踏まえたアドバイスをします。例えば、資料にグラフをたくさん載せて資料作成に時間がかかると嘆いている後輩の資料をチェックし、本来の目的は何か、仮説は何かを一つ一つ確認していくことです。 カイゼンプロジェクトの課題解決策 現在進行中のカイゼンプロジェクトでは、「資料作成に時間がかかりすぎている」「この資料作成は本当に必要か」といった課題があります。これらの問題を解決する方法の一つとして、目的をしっかり確認し、仮説を明確にしてから資料を作成するというアプローチを取り入れることが有効です。目的を明確にした上で、仮説を立て、必要な資料を作成する重要性を後輩たちに伝えることが必要です。

データ・アナリティクス入門

問題解決のアプローチで明確なビジョンを構築

問題解決のアプローチを学ぶ 問題解決には、「現状→あるべき姿」と「現状→ありたい姿」の二つのアプローチがあることを学びました。自分の業務に照らし合わせると、現状では大学の退学率が○○%であるのに対し、ありたい姿は退学率を0%にすることです。現状とありたい姿を明確に認識することで、分析時のブレを防ぐことができると思います。 イベントでロジックツリーをどう使う? 大学でイベントを行う機会が多くありますが、その際にロジックツリーを使用し、来場者プレゼントやイベント内容を決定するのに活用できそうです。また、このプロセスをチーム内で共有することで、決定の場面で話がスムーズに進むと感じました。 分析の透明性をどう確保する? 誰かに説明する際には、分析のフレームワークを共有し、「こういった分析を行い、こう決定した」という考えの過程を透明にすることが重要です。さらに、何か分析を行う際には、闇雲に考えずに、まず分析のフレームワーク(ロジックツリーやMECE)が活用できないかを検討することを心がけたいと思います。

クリティカルシンキング入門

数字の秘密を読み解く冒険

数字の変化はなぜ? 数字の変化の理解には、その構成要素をどのように分解するかによって、要因が見える場合と見えない場合があることを学びました。MECE(Mutually Exclusive, Collectively Exhaustive)を常に意識しつつ、事実に基づいた正確な分析を心がけ、訓練を進めたいと思います。 保留事項はどう考える? 特定の層に対する保留の度合いを、新たな区分や詳細な粒度で分析し、要因や傾向を明確にすることを目指しています。これにより、内容によっては保留率を下げたり、不要な確認を省略でき、業務の効率化が図れると考えています。 データ分析はどう進める? 具体的には、過去5年のデータを集計し、保留理由や契約者の年齢、営業担当者の経験やエリアなどによってグループ分けを行います。さらに、各層の傾向を棒グラフで示し、変化の推移を折れ線で追い、散布図を用いて他の傾向も探っていきます。発見した傾向については、さらに要素を分けたり、分析の範囲を絞るなどの詳細な分析を行う予定です。

「業務 × 行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right