データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

戦略思考入門

規模と範囲の経済が拓く事業戦略

規模経済の本質は? 規模の経済について、これまでは何となく理解していた部分がありましたが、変動費と固定費それぞれの要因や、その要因が置かれる状況によってどのように影響を受けるかが具体的に分かり、非常に気づかされました。また、規模の不経済が働く場合もあることを知ることで、自社の前提を把握し、規模拡大の是非や他の方法での利益改善の検討がしやすくなったと感じます。 範囲経済のメリットは? 一方、範囲の経済は、ある事業の資源を別の事業で共有し有効活用することで、設備や人材、技術の共有を通じてコスト削減や効率化、収益の最大化を図るものです。多角化戦略や複数事業の展開において、コスト削減や効率化が実現できるかどうかが重要な判断ポイントとなりますが、共有できる資源が限られる領域で多角化を進めると、逆に非効率が生まれ、利益を圧迫するリスクもあると理解しました。 固定費対変動費の調整は? 実際の業務においては、販売規模の縮小により固定費の割合が高まり、利益率が低下するという問題に直面しています。こういった状況では、固定費と変動費のバランスを再検討し、利益改善のための具体的な方法を検討する必要があると感じます。 戦略の選択はどう? 事業戦略を立案する際には、どの領域に注力し、どの領域から撤退するかという判断を行うだけでなく、他事業との間で範囲の経済が働くかどうかという視点を踏まえて検討することが、今後の成功に繋がると実感しました。

戦略思考入門

リスクとシナジーの新発見

規模と習熟、どうなる? 規模の経済と習熟効果については、もともとなんとなく理解していた部分もありましたが、今回の学習でその理解が深まりました。たとえ市場における優位性が確立されていたとしても、規模の不経済が生じたり、急激なイノベーションによって製品やサービスが取って代わられたりするリスクがあることを改めて実感しました。 リスク管理は十分? また、企業が継続的に事業を展開し、安定した売上や利益を得るためには、さまざまなリスクにどのように事前対応し、発生時に適切な対処ができるかが重要であると感じました。特に、規模の経済のメリットを享受している状況でも、リスクマネジメントの重要性を理解することが必要と実感しました。 シナジーの秘密は? 一方、範囲の経済に関しては、私が想定していた以上に多くのシナジーが存在することがわかりました。講義内で取り上げられた、あるビール会社の例は非常になぜそうなるのかを納得できるものでした。自社の資源やノウハウをどのように他の事業に転用してシナジーを生み出すか、この目利き力が非常に重要だと感じています。 学びと統合、どう活かす? コンサルティング業務で企業分析を行う際、顧客企業の事業内容とそこから生まれるシナジーを考慮するための有用な視点となりました。また、統合が予定される自社の事例においても、今回学んだ範囲の経済の知識を活かして、今後のシナジー創出に向けた議論に貢献していきたいと思います。

クリティカルシンキング入門

データ分析で解決策を見つける喜び

Week1からの学びを総括 今週は振り返りの週ということで、改めてWeek1からの学びを総括しました。 まず、「データを理解し、深く分解すること」や、「相手に正確に伝えるアウトプットの重要性」、「イシューを特定し、それに対する適切な打ち手を考えること」を学びました。 トラブル解決で何を思い出す? 私の業務は製薬会社の生産部門におけるトラブル解決を担当しています。そこで思い出すのは、以下の内容です。 まず、年間目標や業務ごとの課題解決についてです。これには、生産部門でのトラブルの原因究明とその解決策の立案が含まれます。目標の達成に向けてマイルストーンを設定し、各段階でイシューを特定し、対応策を考えることが重要です。 データ分析はどう生かす? 次に、与えられるデータに対する考察についてです。多角的にデータを分析し、イシューを浮き彫りにする能力が求められます。この分析の過程で得られた洞察が、課題解決の手がかりとなります。 メンバー育成の視点で何が重要? 最後に、部門のメンバーのキャリア開発と育成です。これも同様に、個々の成長を見据えたマイルストーン設定とイシューの特定が重要であり、その都度適切な指導やサポートを行うことが求められます。 今回の学びが示す未来 今回の学びを通じて、日々の業務においても適用できるアプローチが増え、より効果的なトラブル解決とチーム育成の実現が期待できると感じています。

アカウンティング入門

数字の向こうに広がる未来

企業資金の流れはどうなる? 企業の貸借対照表を通して、企業がどのように資金を調達し、どのように投資して価値を生み出しているのか、その流れがしっかりと浮かび上がる点に強く印象づけられました。単に資金の有無を見るのではなく、どのように借り入れ、どの項目に使ったのかという一連の動きから、企業の戦略や成長の方向性を読み取れることが大きな学びでした。数字の裏に隠れた意図を考えることで、企業の本質により深く迫ることができると実感しました。 自社財務はどう捉える? 今後は、まず自社の貸借対照表に注目し、一つひとつの項目を丁寧に読み解くことから始めます。自社がどのように資金を集め、どこに投資しているのか、その背景にある目的や意図を理解することが非常に重要だと感じています。日々の業務に追われがちな中でも、財務の流れに意識を向けることで、自社の強みや改善すべき点、さらには将来的な方向性を具体的に見出すヒントになると考えています。 実践で知識はどう活かす? また、学んだ知識を実践に活かすためには、定期的に貸借対照表をチェックし、各項目ごとに詳細な分析を行うことが大切です。単に数字を理解するだけでなく、自分の言葉で説明できるように言語化し、その内容をチームや上司と共有することで、理解をさらに深められると考えています。こうした分析から得られた気づきを具体的な行動や改善策に結び付けることで、学びが業務にしっかりと活かされていくと期待しています。

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。

リーダーシップ・キャリアビジョン入門

フィードバックが紡ぐ成長物語

エンパワーメントとは? エンパワーメント、すなわち主体的に仕事を任せるという考え方について学びました。目標を明確に示すとともに、部下がその目標に共感し、使命感を持てるよう意識することが大切です。目標やゴールイメージを伝えた上で、どこまで理解し意欲的に取り組む姿勢があるか問いかけ、進捗状況を把握しながら適切なサポートを行う必要があると感じました。 フィードバックはどう? また、エンパワーメントを効果的にするためにはフィードバックが重要であると学びました。まず、部下自身に自己評価を言葉にしてもらい、期待とのギャップや課題を明確にすることがポイントです。結果は分解して、うまくいった点と改善すべき点を具体的に説明し、本人が納得できるプロセスを踏むことが求められます。そして、できなかった要因や次にどうすべきか、いつまでに何をするかを本人自身の言葉で整理することで、納得感と実行力が高まるという点に学びました。 目標との関係は? さらに、部下が目標に対して共感と使命感を持つためには、その目標が部下自身の価値観や業務にどう結びつくのかを質問を通して把握することが必要です。定期的な振り返りの機会を設け、まず具体的な事実や状況を確認し、次にその時の行動や気持ちを掘り下げ、得られた気づきや学びを整理します。最後に、それを基にして今後の具体的なアクションプランを策定するプロセスを丁寧に繰り返すことが、成長と成果に繋がると実感しました。

戦略思考入門

業務を捨てて本質に集中する方法

不要な業務をどう選定する? 本質的な業務に注力するためには、不要な業務を選定することが大切です。これには、「対応しない」「あとで対応する」「外部移管をする」といった選択肢があります。業務を捨てる判断を行う際の重要な判断軸として、「利益が出るか」「現場でうまく運用できるか」「会社の方針に合っているか」「法令やルールを遵守しているか」「公平性は担保されているか」などが考えられます。業務の目的や状況によってこれらの判断軸は変化するため、柔軟に対応することが求められます。 優先順位の低い業務は? 来期の部署の年間計画を策定する中で、財務の観点や会社の方針に基づいて優先順位の低い取り組みについては捨てるよう、上司に提案していく方針です。また、取引先に提案を依頼する際には、私たちの要望の中での優先順位を明確に伝えます。私が提案を行う時も、相手が本質的に何を求めているのかを理解するよう努めます。業務の中では、過剰な報告・連絡・相談の廃止や、会議用資料の作り込みすぎを避けるといった細かな改善も進めます。 判断軸の統一はなぜ重要? 捨てる要素に関する判断軸は、チーム内での認識を統一しておくことで意思決定がスムーズになると感じています。そのためには、上司と相談しながら捨てる業務の意識や判断軸の統一を図っていきたいと思います。上司に納得してもらうためには、根拠が必要となるので、数値化可能な部分はしっかり準備して提案するよう努めます。

クリティカルシンキング入門

イシュー特定で業務効率が劇的に向上

基礎知識の学びと課題発見は? ここまでに基礎知識やデータの読み解き、思考方法を学びました。課題としてイシューを特定するためには、問いから始めることが重要だと認識しましたが、まだ経験から来る判断をしているとも感じました。これを改善するために、常に意識し振り返りを行うことで、習慣化を目指します。 目的とゴールの意識が業務を変える? まず、イシューを特定し、目的とゴールを意識することが重要です。具体的には以下の点で活用範囲があります。 1. **業務の設計** - 目的とゴール、そしてあるべき姿を常に意識します。問いから始めることで、すぐに要点だけに意識を向けるのではなく、全体を俯瞰して考えることが大切です。 2. **人的なミス** - 仕組みや設計に問題がないのか、そもそも対策が必要かなど、広い視野で本質的な原因を考えるようにします。 3. **会議** - 何を決定する会議かを明確にし、イシューが何であるか、本質と内容がずれていないかを意識し続けます。 4. **資料作成** - イシューが何か、無駄な項目がないかを意識し、前提→結論→具体例がぶれていないかを確認しながら作成します。相手にとってのイシューや疑問をくみ取れる内容にすることが求められます。 問いから始めると否定的に捉えられる可能性もありますので、伝え方や日々の信頼残高を貯める意識を持ち続けることが重要です。

データ・アナリティクス入門

データの見方で変わる分析の魅力

代表値と平均値の意味は? 「代表値」の取り方によって、仮説そのものが変わるため、スタート時点ではデータが正しく取得されているか確認が必要です。また、「平均値」は何を表すために使用するのかを確認する必要があり、すべての現象に平均値が適切であるわけではありません。代表値が正しく算出されているかどうかは、確認できれば行うべきです。例えば、前月や前年同月と比較して、結果が適正範囲であるかどうかを確認することが有効です。 標準偏差の目的は何? 「標準偏差」については、業務で適用するケースがほとんどなく、代表値同士を比較して分析する機会が少なかったと感じています。しかし、標準偏差を確認することで、実際のばらつき具合を把握できる場合があります。 データ推移をどう捉える? また、数字だけの表が緑・赤・黄に色分けされているなど、見た目でわかりやすくしていますが、これが単月でしか使用されていない現状があります。数ヶ月ごとのデータ推移を比較し、グラフ化することで、情報をより深く読み取ることが可能になります。 新たな可視化方法は? 可視化においては、円グラフやヒストグラムを多用していますが、それ以外の手法を取り入れることが少ないと気付きました。他の表現方法を取り入れ、第三者に訴える視覚的なグラフを作ることを試みたいと思います。むしろ、意図的に不適切なグラフも作成してみて、それがどのように不適切に見えるかを学ぶことも重要です。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

データ・アナリティクス入門

問題解決力の高め方がわかる最高のストーリー

問題解決手順をどう進める? 問題解決のプロセスは、「What→Where→Why→How」の順で進めることが重要です。特に「How」の段階では、課題に対して複数の仮説を立て、それに基づいて具体的な対策(打ち手)を検討します。この際、効果、コスト、スピードなどの枠組みを用いると視覚化しやすくなります。 効果を測定するための方法は? 効果を測る方法としては、ABテストが有効です。ランダムにユーザーを対象としてテストを行うことで、より効果的な対策を実証できます。 打ち手を評価する際の注意点は? また、打ち手を検討する際には、決定要素を洗い出し、各項目に対してメリットとデメリットを評価します。仮説をもとに打ち手を考える際も、常に比較する意識を持つことが大切です。必要であれば、再度ABテストを行い、効果が高い対策を実施します。 プロジェクトで重視すべきポイントは? プロジェクトにおける課題解決業務においては、次のポイントを重視します。まず問題解決のプロセスを意識して、問題の所在とその本質的な要因を明確にします。その上で具体的な打ち手を考え、その効果を検証します。この状況でABテストが必要であれば、実施します。 新企画の決定基準はどう定める? さらに、新しい企画や打ち手を考える時は、決定の基準となる枠組みを明確にし、比較を行います。これにより、異なる打ち手の粒度を均一にし、論点を具体化します。
AIコーチング導線バナー

「業務 × 行う」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right