リーダーシップ・キャリアビジョン入門

人材育成とエンパワメントで変わるリーダーシップ

リーダーの役割とは? WEEK01〜05を通して学んだことについて。 私にとって不足していた視点は、リーダーとしての人材育成の観点でしたが、本講座を受講することで大きな収穫がありました。これまでは、人材育成とは仕事の方法を教えることだと誤解していましたが、変化や競争が激しい現代においては、部下が自ら考え行動できるように促すことが重要であると学びました。その手法としてエンパワメントがあることも理解しました。 フィードバックの役割を知る ライブ授業で学んだ評価のフィードバックの目的も同様に、会社が期待する役割を伝えることで、メンバーのモチベーションを向上させ、自己成長を促すことにあります。これにより、会社に貢献し、成果を上げるチームを作ることがゴールとされています。 モチベーションを高めるには? 能力があるにもかかわらずモチベーションの低いメンバーや、チームの成果に十分貢献できていないメンバーが一定数存在しています。そのような人々に対して、どうアプローチし、チーム全体のレベルを上げていくかについて、これまでの学びを活かしながら考えたいと思います。 適切な仕事の振り方を考える メンバー全体のパワーをフル稼働させるためには、頼りがちなメンバーにばかり仕事を任せるのではなく、敢えて機動力が低いと捉えられているメンバーにも適切な仕事を振ることが重要です。その際、環境要因と適合要因を考慮し、本人にとって少し難易度の高いレベルの仕事を任せてみます。それでも仕事の進捗が期待通りでない場合は、その人が抱えている障害やモチベーションを下げる要因を冷静に分析し、適切なアプローチを取りたいと思います。現在任されている大きなプロジェクトを推進しながら、これらのことを実践してみます。

リーダーシップ・キャリアビジョン入門

自主性を育むエンパワメントの秘訣

自律行動はなぜ大切? エンパワメントとは、目標達成のためにメンバーが自律的に行動できる力を引き出すリーダーシップの一手法であり、目標は明示しつつも遂行方法は各自の自主判断に任せる点が特徴だと感じました。同時に、活動を円滑に進めるための環境整備や必要な支援が大切であり、最終的な責任はリーダーが持つという基本姿勢も理解できました。 エンパワメントの適否は? また、エンパワメントが適する業務と不向きな業務があることも印象に残りました。緊急性が高くミスが許されない業務は、柔軟な自主判断を求めるエンパワメントの手法には向かないと感じました。一方で、適用する際には質の担保や時間のリスクもあるため、その点を十分に考慮する必要があると学びました。 主体性はどう引き出す? さらに、エンパワメントを実践するためには、メンバーに主導権を委ねることが重要です。具体的には、能力を少し上回る難易度の目標を設定し、計画策定から本人に任せることで、主体性を引き出す工夫が求められます。こうしたアプローチを取る際には、余裕をもって相手をよく理解し、柔らかい雰囲気を作ることもポイントだと感じました。 対話でどんな成果が? 普段のコーチングにおいては、ティーチング要素に偏りがちですが、相手が自ら考え実行することでどのような成果が得られるのかを意識させ、具体的な目標を共有する対話が大切であると再認識しました。相手の状況や価値観に合わせた会話を心がけることで、業務の必要性や目標への共感をより引き出すことができると感じます。 納得感はどう生まれる? この学びを通して、今後はエンパワメントの手法を活用しつつ、目標に対する納得感を醸成するための具体的な対話や支援を実践していきたいと考えています。

クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

デザイン思考入門

共感でつなぐ学びの軌跡

共感の価値は? デザイン思考における「共感・課題定義・発想・試作・テスト」の5つのステップについて、2点の学びがありました。まず、共感の重要性です。共感とは単に同意することではなく、お互いが認識できる共通の「何か」を見出すことだと感じました。 非線形の魅力とは? 次に、これらのステップは非線形に繋がっているという点です。特定の順序にこだわるより、行きつ戻りつのプロセスを経ることが、各ステップが互いに影響し合い、より良い思考とプロダクトにつながると実感しました。 意見共有は難しい? また、システム開発の上流工程では、プロジェクトメンバー間でどのように意見を交わし、定義を共有するかが非常に重要です。システム思考がその施策として大きな役割を果たす可能性はあるものの、実際にどの程度効果を発揮するかはまだ未知数です。一方で、プロジェクトメンバー間で「共感」がどこまで実現できるのか不安に感じることもあります。これまでの経験から、どうしても「同感」に偏ってしまい、ほぼ100%の合意が必要とされる傾向があるように思えるからです。すなわち、MUSTとWANTの区別なく、すべてが必要とされる状況が根付いているのではないかと考えています。 今後の課題は? この点については、今後学びながら整理し、業務に活かしていきたいと考えています。具体的には、まずは受講生の仲間に「共感」についてヒアリングを行い、意見を共有してみたいと思います。ワークは課題中心であるため、私個人の興味本位で話を進めるのではなく、オフ会や自主的な懇親会などの機会を利用して課題提起を試みるつもりです。また、実際の仕事の中で共感と同感の線引きがどのように行われているのかも観察しながら検証していきたいと考えています。

データ・アナリティクス入門

問題解決力が劇的に向上した理由

問題解決の新しいアプローチとは? 「What」「Where」「Why」「How」のステップについて、私はこれまで問題解決を漠然とした情報から考えていました。しかし、本講座でこの方法を学んだことで、漏れなく深く考えることができると感じ、印象に残りました。 問題解決には「あるべき姿」と「現状」のギャップを考えるアプローチが効果的です。私にはこの考え方があまり馴染みがなかったのですが、このように捉えると急に思考がスッと整理され、考えやすくなりました。これは非常に印象的でした。 新たに学んだ「MECE」の重要性 今週の学習では、新しいことが多く、一つとして「MECE」という言葉を初めて知りました。データの切り分け方の基本として非常に重要であり、生きたデータを整備する上で欠かせないと理解しました。実務での適用はまだこれからですが、曖昧さを排除するために「その他」を効果的に使うコツを学び、使える時が来たら活用していきたいと思います。 ギャップ分析をM&Aにどう活かす? 「あるべき姿」と「現状」のギャップを考えるアプローチを、私の仕事である事業承継型M&Aコンサルティングにどう生かせるか検討しています。例えば、買い手候補の選定においてシナジー効果を考慮しながら、売り手会社が目指す「ありたい姿」とのギャップを埋めるような選定を進めることが可能だと感じています。 データ分析での工夫はある? ロジックツリーやMECEについては、私の現職ではデータ分析で具体的に使用する場面が少ないと感じました。ただし、M&A後の支援においては、各事業ごとのデータを分析する際、上司から指示を受けてロジックツリーを活用した経験があります。今後も内部プロジェクトや会議で役立てたいと考えています。

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

クリティカルシンキング入門

問い続けた日々の気づき

自問自答する意味は? クリティカルシンキングでは、知識を実務に活かすための思考力を磨くことが重視されています。瞬発力と持久力を合わせ持つ必要があり、自分の考えには必ず偏りが生じ、無意識のうちに制約を設けてしまうため、常に自問自答する姿勢が求められます。 思考の幅を広げる秘訣は? また、視点、視座、視野という3つのアプローチを通じて思考の幅を広げることが重要だと学びました。頭の中でロジックツリーを効果的に活用し、MECEの原則に基づいて情報を整理する方法も実践しました。帰納と演繹を用いることで、抽象的な概念と具体的な事例を行き来するトレーニングが、主観から客観へとシフトするきっかけとなります。 動画学習の問いかけは? さらに、動画学習では3つの基本姿勢が紹介されました。常に目的を意識すること、誰にでも思考のクセが存在するという前提を持つこと、そして絶えず問い続けることです。「だから何?」「なぜ?」「本当に?」と自分に問いかけ、思考を言語化し、経験を教訓へと変えるプロセスが、基礎となるコミュニケーション力と問題解決力を養うと理解しました。 論理表現をどう磨くか? 実践面では、経営会議でのプレゼンテーションや、上司との議論、部門・部下への意見のブレークダウンの際に、瞬発力と持久力を兼ね備えた論理的な表現が求められています。そのため、日々、自分の考えに偏りがあることを認識し、自己批判の視点を持って反復トレーニングに取り組む必要性を感じています。 仲間と意見交換は? しかし、持久力や論理展開力を瞬発的に実践する感覚や、成長を実感する体験は、まだ十分に得られていません。この点について、同じ課題に取り組む仲間たちと意見交換ができればと考えています。

クリティカルシンキング入門

伝わる文章を書くための鍛錬術

書くことで思考力を鍛えられる? 「言葉を書くこと」自体が思考力を鍛えることに繋がることを学びました。具体的には、①言葉の選択、②順序の整理、③概念の整理が必要だと感じました。 相手に伝わる言葉遣いとは? 言葉を書く際には、主語と述語を強く意識することが大切です。日本語の特性上、主語や述語がなくても言いたいことが相手に伝わりやすいですが、それでも相手が内容を理解するために労力をかけている可能性があります。したがって、相手の立場に立って丁寧な言葉で伝えることが重要だと学びました。 文章コミュニケーションの増加 仕事の中では、電話よりも文章でコミュニケーションを取る機会が増えています。これにより、文章にする機会が過去に比べて大幅に増加しました。 より伝わる文章作成のポイント 今後、より伝わりやすい文章を作成するためには工夫を怠らず、次の点に注意します。 ・社内チャットを利用する際には、送信前に主語と述語が入っている文章かどうかをチェックします。 ・資料作成時には、相手を想像し、短く端的に伝える書き方を意識します。 ・報告や連絡、相談時には、思いついたまま言葉を発さず、まずピラミッドストラクチャーの図をイメージすることが大事です。具体的には、伝えたい明確な理由を最初に考え、根拠に繋がる事象を複数思い浮かべます。 ・言葉を発する直前には論理を整理し、ピラミッドストラクチャーを頭でイメージしてから言葉を発します。 ・文章生成時には、業務連絡や上司への業務進捗の報告など、あらゆる場面で「伝わる」を意識し、長文になりそうな場合はマークダウン形式を活用します。 提案方法を実践するには? これらの方法を実践し、伝わりやすいコミュニケーションを目指します。

クリティカルシンキング入門

問い続ける学びの軌跡

イシューはどう見極める? まず、イシューを特定するためには、必要なデータを揃え、各データの特徴が明確になる切り口から捉えることが大切だと感じました。その上で、結論を導くためにはMECE(漏れなくダブりなく)の視点で情報を分解し、ロジックツリーを活用して全体の構造を整理していくアプローチが有効だと思います。 本質はどう捉える? また、イシュー自体は疑問形で問いかけを続けることで、その本質や輪郭が浮かび上がってくると実感しました。今、自分たちが本当に考えるべきことは何か、解決策を急ぎすぎずにじっくりと検討する姿勢が重要であると感じています。どの問題を課題として捉えるべきかを問い続けることが、正しいアプローチへとつながるのだと実感しました。 論点はどこにある? さらに、プロジェクトやチーム内の課題、タスクの対応において、この手法は非常に有用だと感じました。担当している作業の中でどこに問題があり、何が論点なのか、またいつまでにどのような解決を図るべきかといった点を明確に把握するためのツールとして活用できると考えています。これにより、チームや上司、クライアントとの認識共有がスムーズになり、問題解決への具体的なステップが見えやすくなるでしょう。 説得力はどう伝える? また、社内研修や新技術の勉強会など、さまざまな場面においても、同じ手法で問題点や論点を整理することができる点に大いに役立つと感じました。考えた道筋を正確に日本語の文章に落とし込み、しっかりとした説明ができるようにすることは、説得力を高める上でも非常に重要です。問題点を混ぜ合わせず、具体的にどこにどのような課題があるのかを順序立てて整理していくことが、確かな解決策を見出すための鍵になると考えています。

クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分を客観視できる? 今週の学習で最も印象に残ったのは、「自分の考えを批判するもう一人の自分を育てる」という視点でした。人は無意識のうちに偏った思考に陥りがちなため、客観的に自分の考えを振り返る力が重要であると感じました。また、反復して考える習慣が思考のクセをつける上で効果的であり、業務に学んだ知識や教訓を取り入れる「自分化」の考え方にも共感しました。現在、財務関係業務を担当しており、経験が浅い中で多角的かつ客観的な思考の必要性を日々痛感しているため、クリティカルシンキングを通じて自分の立ち位置や課題を明確にし、論理的に考える力を養いたいと考えています。 本当に見落としない? また、今週の学びは自身の情報分析業務においても大いに役立つと感じています。業務では、さまざまな情報を基に評価の前提を組み立て、妥当な見解を導く必要がある中で、「本当にこの判断は適切か?」「他に見落としがないか?」と自問する姿勢が欠かせません。過去には情報の選び方や判断に自分の思い込みが入り込んでいた可能性もあり、客観的に考える力をより一層磨く必要性を実感しています。今後は、情報整理の際に論理的なツリーや適切な枠組みを意識し、思考の偏りを防ぐ努力を続けたいと思います。また、導き出した結論を関係者に伝える際に、分かりやすく納得感のある説明ができるよう、言語化と構造化にも注力していく所存です。日々の業務の中で意識的に思考を反復し、クリティカルシンキングを実践に落とし込む努力を続けたいと考えています。 偏りをどう修正する? これまでの業務で、自分の思考に偏りがあると感じたときには、どのようにそれを検証し、修正していますか? また、そのプロセスを通じて得た気づきや工夫があれば教えてください。

リーダーシップ・キャリアビジョン入門

本当のやる気と成長のヒント

モチベーションはどう上がる? モチベーションを上げることは依然として難しい課題だと再認識しました。今回学んだ「ハーズバーグ二要因理論」は初めて知るフレームワークで、特に「衛生要因」に着目する考え方が印象的でした。たとえば、給料が上がったとしても、それだけでは満足感は得られず、不満を感じない状態にする役割にとどまるという点は納得できる内容でした。 動機はどう高める? また、昨今は「やりがい」や「自己の成長」、「社会への貢献度」などが重視される傾向があるため、これらの「動機づけ要因」をいかに高めるかが重要だと学びました。会社の制度などに関連する「衛生要因」は自分自身での変更が困難なため、今後は「動機づけ要因」を活かしていく方針です。 議論はどう進む? 具体的には、課内会議などで収支の報告を行い、メンバーの日々の活動が会社にどのように貢献しているかを共有するように心がけます。マイナス面についても事実を伝えるにとどめ、感情的な反応を避けることで、より建設的な議論を促していきます。 失敗から何を学ぶ? また、以下の点にも留意していきたいと思います。まず、自分の作業に没頭しすぎず、他者にも目を向け、その行動や考え方に興味を持って観察する時間を設けます。次に、他人の全てを理解するのは不可能であることを認識し、トライ&エラーを繰り返しながらメンバーと接する姿勢が大切だと感じています。その際、自身もリーダーとして失敗することがあるということをメンバーに伝え、共に成長していく環境を作りたいと考えています。最後に、モチベーションを上げる鍵は本人自身にあるということを肝に銘じ、うまくいかない場合も一喜一憂せず、十人十色の考え方を尊重することを忘れずに取り組んでいきます。

データ・アナリティクス入門

比較で浮かび上がる数値の真実

データ分析の意味は? データ分析とは、目の前にある数値だけを見るのではなく、比較を通して全体像を把握する作業です。見えていない情報にも仮説を立て、その仮説を検証していくことが重要だと感じました。また、分析対象の情報が本当に分析に適しているか、すなわち同じ条件で比較ができるかどうかを考える必要があると再認識しました。 従業員調査の見方は? 従業員サーベイの結果を集計・分析する際には、勤続年数や部署ごとの違いなど、比較するための項目を設定し、その項目ごとの数値の違いを検証する手法が有効だと思いました。過去と現在のデータをグラフで比較すると、経営陣にも伝わりやすい形で分析結果を示すことができると確信しています。今後の学びを通じ、より良い分析手法を身につけたいと考えています。 評価の背景を読む? また、評価の集計においても、単に数値を合算するだけでなく、個々の数値を詳細に分析することで、評価の変動に対する背景(仕事の内容や健康状態など)を把握し、人事としての原因究明に役立てられると思いました。 導入検討時の比較は? さらに、物品やシステムの導入検討時も、購入したい対象の販売元のデータだけに依存せず、導入の目的や他の製品との比較を行うことが重要だと感じました。例えば、現状のシステムから変更する際、どの点で改善が期待できるのかを明確にすることが求められます。 条件判断の極意は? 最後に、同じ条件での比較という考え方についてはなんとなく理解できましたが、本当に同じ条件なのかをどう判断するかという具体的なコツについては、まだ疑問が残ります。データ分析初心者として、わからない点が多い中で、皆さんと一緒に学びながらより深い気づきを得られればと思っています。
AIコーチング導線バナー

「学び × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right