データ・アナリティクス入門

仮説立ての新技術でユーザー獲得倍増へ

仮説立ての重要性をどう理解した? 仮説を立てることについての理解が深まりました。これまで、仮説を考えるプロセスがわからず、思いつきや一部のデータに偏った仮説立てをしていました。それがよくないと気づいてはいたものの、他の手段を考える余裕がなかったり、時間が限られていたりして、そのままにしてしまっていました。しかし、今回の学習により、3C(市場・顧客、競合、自社)を網羅して複数の仮説を立て、その上で4P(商品、価格、場所、プロモーション)のフレームワークを活用して網羅的に検証することが大事だと理解しました。 新規ユーザー獲得の戦略は? この学びを二つの業務において活用したいと考えています。 まず、自社サービスの新規ユーザー獲得導線の増強に活用したいと思います。現在、オウンドメディアの記事がある程度の検索表示回数や順位を保てるようになっているので、さらなる表示回数の増加と新規登録への導線強化を目指しています。具体的には、メディアの3Cのうち「市場」と「競合」を4Pのフレームワークを使って網羅的に検証し、新しい仮説を立てて実践してみたいと考えています。 既存ユーザーへのアプローチは? また、既存ユーザーについても同様に4Pフレームワークを活用し、新規獲得に向けた分析を行います。具体的には、現状のユーザー行動を分析し、ゴールまでの導線を仮説立てして検証し、改善策を見つけ出したいと考えています。

戦略思考入門

戦略的思考で未来を描く

復習と戦略の意味は? 今週は、これまで学んだことの復習と、将来の理想像について考えを深めました。戦略とは、目標を設定し、その目標に向かって進むための道筋をどのように描くかを思考することです。この過程では、様々なフレームワークが活用され、それによって分析や思考の整理を助けることができます。ただし、これらのフレームワークは、理解し適切に活用しないと、整合性が欠けたり、表面的な分析で終わってしまうことがあるため、注意が必要です。 ゴールの方向は? 現在取り組んでいるプロジェクトでは、ゴール設定に迷う案件があります。そこで、まずは現状の分析にいくつかのフレームワークを活用し、外部環境と内部環境を分析することで、目指すべきゴールの方向性を見つけ出そうと考えています。 仕事の分担はどう? さらに、4Wで学んだ選択と捨てるという概念についても、リソース不足のために自分が抱えてしまうことが多いですが、部分的でも他の人に業務を任せることを実施していきたいと思います。 考える時間は? 日々の業務量が多いため、場当たり的に業務をこなしてしまう傾向があります。そのため、しっかりとした分析や戦略を練る時間を確保できていないのが現状です。これを改善するために、自分のスケジュールに考える時間を組み込んでいきます。また、フレームワークを自分のものにするために、日常的に使う意識を持つことも重要です。

クリティカルシンキング入門

データ分析で見える世界が広がる!

データ分析の最初の一歩は? これまでデータ分析を行う際、どこから手を付けてよいかわからず迷っている時間が長かったのですが、今後は「まずは分解して傾向を探ってみる」「何も見えなくても失敗ではない!」という姿勢でアグレッシブに取り組んでまいります。 情報共有で意識すべきこと 施策立案前の仮説構築、施策の効果検証、上司/同僚/取引先との情報共有や報告など、全体像を漏れなく把握し問題点を特定、改善策を検討し、データ検証し、関係者へ共有/報告するすべてのフェーズにおいて、今週の学習が生かせると感じました。MECE(モレなくダブりなく)は、マーケティングやPDCA改善に欠かせない思考であるため、常に留意して業務に取り組んでまいります。 可視化がデータ分析の鍵? データ分析においては、頭の中で考えるのではなく、まずは可視化できるもので状況を整理することが重要です。頭の中だけで整理したものでは抜け漏れが発生しやすいため、他者と共有する際のツールとしても活用できます。また、切り口に迷うよりもまずは分解をしてみて傾向を探ることが大切です。トライアンドエラーを通じて、分析方法の傾向を掴むことができます。 コミュニケーションで大切なことは? コミュニケーションにおいては、情報共有や報告の際に「モレなくダブりなく」伝えられているかを意識し、データ共有においても相手が理解しやすい加工を心掛けます。

マーケティング入門

「選択と集中で勝つ!ニーズ分析の極意」

セグメンテーションの重要性とは? 印象に残ったのは、セグメンテーションとターゲティングの部分でした。最初の講義でも触れた「誰に売るか?」という基本概念に通じますが、自分たちの魅力を一方的に押し付けるだけでなく、自分たちの強みを理解しつつ、どの人々にニーズがあるのかをしっかりと切り分ける必要があると感じました。不特定多数の顧客が市場に存在し、資源が限られている状況での「選択と集中」というフレーズが特に印象的でした。さらに、売り込む際には伝えたいことを2つに絞ることが重要で、その中で競合との差別化を図ることが大切だと学びました。 限られた資源でどう選択と集中を? この学びは、組織内での課題解決や顧客ニーズに応えるための企画立案に活用できると感じました。現在、資源が限られている中で顧客ニーズに極力応えていく必要があります。しかし、現状では選択と集中が十分できていないため、誰にどんな商品を提供するのが効果的で、そのためにどのように人的リソースや資源を投資するか考えることが重要だと考えています。 新たな思考法で提案をどう改善? 現在、多くの業務がBPOに近い形で進んでおり、複数の顧客ニーズに応えることが求められています。そこで、ニーズの重心を把握し、商品自体を変更することができない状況でも、新たな思考法を活かして、提案を文書や資料に反映し、効果的な提案ができるように努めていきたいと思います。

クリティカルシンキング入門

見えるから伝わる!視覚資料のヒント

視覚手法は有効? 相手に何を伝えたいのかを整理した上で、グラフ化や文字のフォント、色づかいといった視覚的手法を活用することの重要性を再認識しました。これまで日常のプレゼンテーションで実施してきた手法も、実際にその効果を見直す機会となりました。グラフの種類によっては伝えたい内容がより効果的に伝わるものもあれば、逆に伝わりにくくなってしまう場合もあるのだと感じました。また、文字の装飾についても、その効果を意識して丁寧に活用することで、より分かりやすい表現が可能になると実感しました。 会議資料はどうする? 今後は、事業戦略会議資料や事業計画のスライドにこれらの知見を活かしていきたいと考えています。会議資料では、期の初めから時間経過に伴い売上や利益率が変化していく様子を示し、伝えたいポイントを明確に強調することで、資料全体がより分かりやすくなると思います。事業計画においては、過年度との比較や現状分析から次年度以降に注力すべき分野、来期の目標など、視覚的に理解しやすい丁寧な資料作りを心掛けていきたいです。 改善点は何だろう? また、これまで作成してきた資料を振り返り、改善点を見つけ出すことも重要です。伝えたい内容に沿った順序でグラフや図表を配置し、強調すべき箇所には適切な装飾を施すことで、視覚的な訴求力を高め、読みやすく最後まで関心を引き続けられる資料にしていきたいと思います。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

クリティカルシンキング入門

視野を広げるための問いかけの力

分析時に問いかけの重要性とは? 分析の目的を「問いかけ」から始めることの重要性を学びました。具体的なテーマを最初に決めてしまうと視野を狭めてしまう可能性があります。そのため、「何のために?」と問いかけることからスタートし、具体化することが大切です。また、チームで物事を進める際には、ゴール(目的)を明確にしておくことで、本質から脱線することを防ぐ効果があると理解しました。この認識を忘れないように、何度も共有することを徹底したいと思います。 新規企画にどう役立てる? 新しいサイトやサービスの企画や改善の際にも、この方法が役立つと感じました。たとえば、上司から「このシステムを導入するために資料を作って会議をセットしておいて」と指示を受けることがあります。その際、イシューを明確にしておくことが効果的だと思いました。 効率的なミーティングの準備法は? これまで私は、新しいサイトやサービスを企画する際、「●●について」とテーマを限定してキックオフの資料を準備していました。今後は、事前に情報を分解し、目的を問いかけることでテーマを具体化した状態で会議に望もうと思いました。責任者からスピーディーな改善を求められることが多い中、これにより時間の節約にも期待が持てます。また、データ分析を用いて現状の数値をしっかり把握することで、改善後の効果測定も行いやすくなると感じました。

データ・アナリティクス入門

現象を超えて問題の根本に向き合う方法

問題原因をどう特定する? 問題の原因を明らかにするためには、プロセスを細かく分解することが重要です。そして解決策を検討する際には、複数の選択肢を洗い出し、その根拠に基づいて絞り込むことが求められます。 幅広く解決策を模索するには? 私の癖として問題と認識している点は、現象に焦点を当ててしまうことです。このため、なぜそれが問題なのかをさらに分解整理し、その構造を明らかにすることが必要です。その上で、解決策を思いつきや経験で狭めてしまわず、幅広く検討し、なぜそうするのが良いのかを考え実行し、分析することが重要であると感じました。 業務改善に必要なフローは? 具体的な業務としては、説明資料の作成や土地の探索、収支検討などが挙げられます。これらの部分で改善を図り、成果に結びつけるためには、業務フローや仕事上のプロセスを整理・分解し、成果に結びつく打ち手を検討し実行した上で、さらに改善すべき点を検討することが不可欠です。 データ活用の重要性とは? また、データを収集する経験を深めることも重要です。日頃から意識的にデータを取ることで、どのようにデータが業務に効果を与えるかを考えることができます。説明資料を作成する際には、作り込みすぎずにスライドのパターンをいくつか作成し、A/Bテストの要領で部内や課内でフィードバックテストを行うことも推奨されます。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right