戦略思考入門

リソースを集中活用するススメ

リソース配分は正しい? 限られたリソースをどのように効果的に活用するかを考えることの重要性を学びました。すべての顧客に均等にリソースを割くのは非効率であるため、時間当たりの利益貢献度を基に優先順位をつける必要があります。このアプローチにより、成果が期待できない部分のリソースを大胆に削り、重要な顧客に集中することで、組織全体のパフォーマンスを向上させる戦略が明らかになりました。 ROIで判断する? また、ROI(投資対効果)という視点を活かして意思決定を行うことが効果的だと気づきました。各顧客の売上や利益率、時間当たりの利益貢献度を分析し、ROIが高い顧客にリソースを集中させることが望ましいです。さらに、顧客特性に応じて最適なアプローチを取ることで、ROIをさらに向上させることも可能です。たとえば、長期関係のある顧客には信頼を高めるサポートを、新規顧客には競合と差別化する対応が求められます。 業務見直しは必要? 日常業務においても、昔からの慣習に流されずに、その業務が本当に必要なのかを常に問い直すことが大切です。FAXや印鑑など、過去の流れで続けている作業が本当に不可欠か見直す必要があります。また、不要な業務は思い切って削減し、削減で生まれた余裕を付加価値の高い業務に振り分けます。 自動化は進んでる? 自動化についても常に考慮し、人手で行う業務をRPAや自動化ツールで代替できるかを検討します。その結果、実施可能な自動化プロジェクトをリスト化し、効果的な実行を目指します。 業務目的は何? さらに、業務の目的を定期的に問い直すことも重要です。「この業務は何のためにあるのか?」を見据え、目的に合致していない業務がないか確認し続けることが、より効率的な働き方につながると考えます。効率化の意識をチーム全体で共有し、改善案や気づきを他のメンバーと積極的に共有することで、全体としての効率化を支える体制を築いていきます。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

戦略思考入門

捨てる思考でサービス改善!顧客満足度を再定義

捨てる意味は何? 一番印象に残ったのは、捨てることで顧客のメリットが向上する可能性があるという点でした。なぜなら、これまでは捨てるという行為を、新しい価値を創造するために人や時間を作ることや、コストダウンを目的としたものと捉えていたため、顧客のメリットが上がるという発想はあまりありませんでした。この点から、自分たちの核となるサービスを充実させるために、あくまでお客様のためではなく自分たちのために行っていることがないのかという視点で戦略を再考し、これに活用したいと考えています。また、選択・捨てるときには、定量的な判断基準が必要であり、それによってより客観的な判断ができると感じました。そして、結果を振り返り、さらに必要なアクションをとるためにも、この基準が重要であることを強く認識しました。 対応中止の判断は? 私たちは営業社員向けのコールセンターを運営し、「問合せ対応」と「手続きの受付対応」をサービスの柱としています。これまでは営業社員の満足度を意識して両方を提供していましたが、本当に顧客が望んでいるものを定義し、ROIを考慮した上で「手続きの受付対応」の中止を検討しています。判断基準として、手続き一件当たりの生産性や、顧客の想定通りに手続きが正しく行われるリスク、電話受付以外の代替手段の有無を検討項目としています。 問合せ対応の優先は? さらに、問合せについても待たせることが多いため、つながりやすさを重視して優先順位を設定します。判断基準としては、コンタクトリーズンごとの問合せ量の割合と、営業活動における優先順位の有無を考慮していきます。まずは、優先順位を考える上で基準となる項目を洗い出します。具体的には、サービスの対象者が期待していること、手続き一件当たりのコスト、一回の電話で解決する割合、問合せの応答時間、後処理の時間などです。これらの基準項目を「効果」と「頻度」のマトリクスとして分析し、捨てるべきことを明確にしていきます。

データ・アナリティクス入門

問いから始まる分析革命

分析に必要な問いは? データ分析の本質は、単に数字を扱う技術だけでなく、適切な問いを立て、ストーリーを構築する力にあると改めて認識しました。特に「What-Where-Why-How」のフレームワークは、やみくもな分析を避け、目的に沿った思考を進めるための強力なツールであると感じました。また、平均値だけでなく、分布やばらつき、最頻値を確認する重要性や、積み上げ棒グラフやヒートマップといった視覚化の工夫により、データの解釈が一層深まることも印象的でした。 仲間から何を学ぶ? さらに、仲間と学び合う中で、異なる視点に触れることで自分の思考の幅が広がることを体感しました。その結果、クリティカルシンキング、プレゼンテーション、マネジメントといった周辺スキルの必要性も再認識することができました。今後は、学んだ内容を単なる知識として終わらせず、実務に生かし、共有し、継続して取り組むことが課題であり、楽しみでもあります。 組織活用のヒントは? 学びを個人だけに留めず、組織全体で活用するために、顧客体験向上では利用者属性や満足度のデータを基に、ターゲット毎にプランやサービスを改善していく考えです。具体的には、ある層に合わせた柔軟な契約プランや、別の層に対してサポート体制を強化するなど、感覚だけでなく根拠あるデータに基づいた意思決定を行い、施策のインパクトを最大化していきます。 研修で課題解決は? また、人材育成と組織への浸透を図るために、「What-Where-Why-How」やクリティカルシンキングといったフレームワークを研修に取り入れ、課題解決力の強化を目指します。分析結果をチーム内で共有し、「なぜ?」と考える習慣を根付かせることで、データがストーリーとして伝わり、現場が納得して能動的に取り組む環境作りを推進します。さらに、部署内での継続的な共有やディスカッションの場を設けることで、視点を広げる取り組みを続けていきます。

クリティカルシンキング入門

データで見つける思考の新発見

データ分解で何が見える? 与えられたデータをどのように分解するかによって、見えてくるものが大きく変わることを体感しました。また、グラフに可視化することで、数字だけでは見えない傾向が明確に浮き彫りになることも理解できました。 思考癖に気づく理由は? データを要素別に分解した際、関連しそうなものを安易に結びつけて一つの傾向として捉えてしまう自分の思考の癖に気づきました。本当にその傾向が正しいのかを確認せず、安直に結論を出して解決策を立てるのではなく、その仮説をもとにさらに分解し、複数の切り口から丁寧に検討することが必要だと感じました。具体的には、「who」「when」「where」「how」といった視点から考えることを学びました。 ターゲット分析はどう進む? また、あるホテルでの活動において、ゲストが楽しみながら地球環境や社会に貢献できるようなサービスを考案する際には、ターゲットを定めるだけでなく、既存の客を分析するために今回学んだ切り口が役立つと感じました。例えば、「who」年代別、属性、「where」出身国、「what」目的、「when」時間帯、「why」選択理由、「how」交通手段や情報源などです。 サービス評価のタイミングは? さらに、カスタマーサービスを分析する際にはプロセスの分解を行い、滞在のどのタイミングで満足度が高いのか、また低いのかを理解し、サービス改善に努めたいと思いました。 根拠をもとに提案は? このような視点から考慮することで、事象の解像度が上がり、思いつきでなく根拠をもとにアイディアを提案できると感じます。日々の業務でアイディアを提案する際には、データをどのように分解して仮説を立てたかを説明することが重要だと思いました。また、「事象分解」「変数分解」「プロセス分解」のいずれかの方法が適しているのか、また切り口を5W1Hから考慮するなど、丁寧に思考する癖をつけることが大切だと考えます。

戦略思考入門

実践で学ぶ経済性の真髄

今週の学びは何? 今週は、コスト低減と作業効率化という観点から学びを深めました。コスト低減は「規模の経済性」「範囲の経済性」「ネットワークの経済性」に分類でき、作業効率化は習熟効果によって実現されると理解しています。 規模経済はどこ? まず、規模の経済性については、基本的な概念は理解していたものの、適用できないケースが存在することに気づきました。実践学習では、季節変動がある商品の場合、生産ラインを増強しても需要が低い時期には過剰供給となり、経済性が発揮されない点が参考になりました。 シナジー効果はどう? 次に、範囲の経済性では、複数事業を展開する大手企業など、シナジー効果が期待されるものの、必ずしも効果が得られない事例があることを学びました。シナジーが十分に発揮されなかった結果、経営上の課題となる場合もあるため、注意が必要と感じました。 習熟は組織にどう? また、習熟効果に関しては、個人の成長だけでなく、組織全体のパフォーマンス向上にも寄与するものであると理解しました。組織内では、ノウハウの蓄積や共有が習熟効果を高めるための重要な要素であると考えています。 公共建設の課題は? さらに、公共建設業界においては、上下水道の管理を行う自治体の統合が進められており、規模の経済性を活かして人件費や設備コストの削減が期待されます。一方、広域化の過程で規模の不経済が発生する可能性もあるため、その点を十分に検討することが求められると感じました。 海外展開を考える? 将来的にコンサルティング業務に携わる際は、クライアント企業の海外での新規事業展開において、規模の経済性が十分に発揮されるかどうか、またバリューチェーン全体を詳細に分析することが重要だと考えています。各プレイヤーの収益構造や立ち位置を踏まえ、規模の経済性が適切に機能するよう、ボトルネックとなる部分に対する改善策を提案できるようにしていきたいと思います。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

データ・アナリティクス入門

多角的仮説検証で未来を拓く

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、これを正しく用いることで個々の仕事に対する検証マインドが向上し、説得力を高める効果が期待できます。また、ビジネスのスピードや行動の精度を向上させる点でも大きなメリットがあります。 多角的視点ってどう? 仮説を立てる際は、1つの切り口に固執せず、複数の視点からアプローチすることが重要です。異なる視点を網羅することで、問題の原因や解決策を多角的に捉えることが可能になります。フレームワークを活用すれば、自分の思考の幅を広げながら、多様な仮説を漏れなく立てることができるでしょう。 仮説の種類は何? また、仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、時間軸に沿ってその内容が変化することも特徴です。仮説検証のプロセスでは、既存のデータ(売上数値やアンケート結果、市場調査レポートなど)を活用する方法と、必要に応じて新たにデータを収集する方法が考えられます。 反証データは必要? 検証にあたっては、自分の仮説を支持するデータだけではなく、反証となるデータも積極的に集めることが不可欠です。都合の良いデータだけを選別すると、結論が誤るリスクが高まるため、幅広い視点から情報を収集する姿勢が求められます。 各視点はどう整理する? 以上のように、仮説は「What」「Where」「Why」「How」といった4つの視点を意識して整理する必要があります。仮説の網羅性と多角的視点、そして反証データを意識することで、広告運用の分析の質や精度向上につながると感じました。たとえば、キャンペーンの予算配分の最適化やランディングページの改善、広告クリエイティブの効果向上、新たなターゲティングの発掘などに対して有効なアプローチだと思います。ただし、優先順位の付け方がまだ未熟な部分があるため、初めはさまざまな切り口での仮説検証に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説と検証で切り拓く成長の軌跡

仮説と検証の意義は? 日々の実務経験を通して、仮説には大きく「結論の仮説」と「問題解決の仮説」があること、また仮説と検証をセットで考える重要性を実感しました。正しい仮説を用いることで、各自の検証マインドが向上し、説得力が増すとともに、ビジネスのスピードや行動の精度が上がると感じています。 良い仮説の作り方は? また、良い仮説を立てるためには、普段から知識の幅を広げ、ラフな仮説を積極的に作成する意識が必要だと納得しています。「創造的な仮説を考えるコツ」として、常識を疑うこと、新しい情報と組み合わせること、そして発想を止めないことが挙げられ、これらはデザイン思考とも通じる部分があり、組み合わせて実践するとより効果的だと感じました。 新たな分析手法は? 普段から使うフレームワークだけでなく、あまり意識していなかった分析手法を取り入れることで、仮説をより広い視点から考えることができると実感しています。例えば、従来の分析手法に加え、最新の視点での分析である5Aカスタマージャーニーを通じた気づきを得るなど、知識の深化が仮説の幅を広げる一助となっています。 新規施策の仮説は? 店舗オペレーションの改善や新規施策の導入時には、常に仮説と検証を繰り返しており、今後もあまり意識していなかった分析フレームワークを積極的に活用することで、より多様な仮説を立てる努力をしたいと考えています。また、セグメンテーションの切り口にも着目し、普段とは異なる視点からデータを考察する習慣を身につけることで、全体の分析力を向上させたいと思います。 マネージャーの挑戦は? さらに、チームマネージャーとしての役割を果たす中で、自らが率先して行動すること、的確な質問によってメンバーの成長を促すこと、そしてチームメンバーと役割分担を行いながら仮説と検証を実践することを意識的に業務に取り入れ、チーム全体のスキル向上に努めたいと考えています。

データ・アナリティクス入門

正しい比較で未来を切り拓く

本質をどう捉える? 今回の学びを通じて、データ分析の本質は「適切な比較」にあると再認識しました。これまでは無意識に比較を行っていましたが、今後は目的意識をより明確に持ち、比較対象や条件の設定に一層注力する必要があると感じています. 比較対象は何のため? まず、比較対象の選定についてです。これまでは目的が単純なため、対象の選定に深い検討を加えることが少なかったですが、今後は「何を知るために、何を基準にするのか」という明確な目的を持って、比較対象を吟味していきたいと考えています. 条件統一の意味は? 次に、分析の条件を統一することの重要性を学びました。分析したい要素以外の条件を揃えることで、因果関係にある要素を正確に特定できるようになり、精度の高い結論に導くことが可能となります. 施策例から何を学ぶ? 例えば、自部門の利益率向上を目指す施策立案の場面では、現状の課題を明確にし、改善策を具体的な数値に基づいて提案することが求められます。そのためにも、前年同期や目標値といった明確な基準を設定し、条件をしっかりと統一した上で、定量データを活用することが重要です. 実務での実践法は? 実務に活かすための具体的な行動としては、まず「基準」を明らかにした比較対象の選定があります。単に数値が低いと結論づけるのではなく、何と比較するかを明確にし、改善のポイントを浮き彫りにします。また、条件を整えた上で要因分析を実施し、真の要因を特定して精度の高い対策を講じることが求められます. 変化にどう向き合う? なお、実際の業務では状況の変化やさまざまな要因により、分析の目的や前提条件が途中で変化することもあると感じています。そのような状況下で、皆さんはどのように方向性を定め、納得感のある結論を導いているのか、また前提条件が揺らいだ場合の軌道修正のコツなどについて、意見交換ができればと思います.

戦略思考入門

事例で学ぶ!本物の戦略力

戦略立案の意義は? 具体的な戦略立案のフレームワークの有効性を学び、多角的な競合分析の視点が印象に残りました。顧客の選択肢となるあらゆる業態を競合と捉えることの重要性を実感するとともに、模倣されにくく持続可能な競争優位を生み出すためには、VRIO分析を活用し自社の資源や能力を評価することが不可欠だと理解しました。また、コストリーダーシップ戦略、差別化戦略、集中戦略という3つの基本戦略を応用し、市場環境や自社の強みを踏まえた長期的な戦略の構築の大切さも学びました。 実務の成果は何? さらに、外食業界における実務の中で、戦略学習の成果が新業態開発や商品開発に直結することを確認しました。競合を多角的に分析し、VRIO分析で自社の強みを引き出す差別化戦略や、ポーターの3戦略を参考にターゲット顧客に合わせた独自価値の提供が重要であると感じました。こうしたアプローチにより、健康志向に対応した業態開発や、多角的な視点からの商品開発、さらにはSNSなどを活用した効果的なマーケティングが実現できると考えます。組織全体で戦略を共有し、実行力を高めることも大切なポイントです。 行動計画の詳細は? 客数増加、収益構造改革、新規出店に向けた行動計画は以下の通りです。まず、新業態開発では、市場調査で顧客ニーズと競合状況を把握し、VRIO分析により自社の強みを明確化した上で、コンセプトや持続可能な収益モデルを構築します。次に、既存業態改革では、ABC分析を用いてメニューを見直し、高収益メニューの促進や、オペレーションの効率化、また顧客満足度調査を実施してサービス改善に取り組み、デジタル技術の活用によりリピート率を向上させます。最後に、新規出店では、エリアマーケティングによって最適な出店エリアを選定し、多様な店舗フォーマットの開発と投資リスクの最小化を図る方針です。これらの行動を通じて、企業としての競争優位の確立と持続的な成長を目指します。

データ・アナリティクス入門

実践で証明!成功へのABテスト術

ABテストはどう実践? ABテストの存在を初めて知ったとき、施策を同時進行で実施しながらも、60~70%程度の成功を見込んで行動し、その結果をもとに対策を絞り込むという考え方に納得しました。職種上、普段は使う機会がないものの、今後の選択肢として意識しておきたいと思います。ただし、ABテストを実施する前には、しっかりとした検証のステップを踏む必要があることは言うまでもありません。 論理検証はどう? また、分析においては、クイズのような抜けや漏れを防ぐために、段階を追って論理的に検証を進めることが重要だと感じました。 試行で得た自信は? 実際に、昨年のこの時期、自身の残業対応策を試行し、修正が必要だと感じた箇所を2、3ピックアップして対応を行いました。具体的には、チェックリストの活用や同一項目の一連化(モジュール化)を実施し、もやもやとしていた問題を解消することができました。これにより、自分でもできるという自信がついたのは、ある意味でABテスト的な試みだったと思います。問題解決は原因と結果の因果関係を追及することが重要ですが、定石通りの対応も身につけつつ、今回の成功例を対策の一つとして活かしていきたいと考えています。 実践は何に効く? いずれにしても、実践することの大切さを改めて実感しました。残業時間の短縮に成功した経験をもとに、他の改善点にも同様のアプローチを適用してみたいです。実践を通じて、得たノウハウや注意点を蓄積しながら、さらなる改善を目指す所存です。 問題はどう解決? 何を改善し、どの問題を解決するのかというテーマ設定自体も重要なカギです。以前、他者からの問いかけがきっかけで、これまで諦めていた問題に挑戦し、結果的に成果を得た経験があります。この経験から、まずは取り組みやすく成果が出やすい問題を選び、ステップを踏んで実験・検証を繰り返すことが、問題解決への確実な道であると感じました。
AIコーチング導線バナー

「分析 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right