データ・アナリティクス入門

多視点比較で広がる学びの世界

比較の意義は? 分析の要点は、比較にあるという点が非常に印象深かったです。動画と同様に、特定の企業を導入するという目的が先行しがちで、その情報をもとに比較対象を探すことが多かったため、ディスカッションを通してさまざまな視点が存在することを学びました。今後の学習では、固定概念にとらわれず、他の選択肢についてもしっかりと検討することが必要だと感じています。 異なる視点は? また、前述の通り、導入の目的が一方に偏る傾向があったため、別の視点も重要であると再認識しました。自分自身の考えだけに依存するのではなく、異なる問題意識や視点も考慮しながら、比較を進める際に他の検討要素がないか常に意識するよう努めたいと思います。 検証はどうする? さらに、提案時にはイシューを軸にして比較の正しさを検証し、どのグラフが正確な情報を伝えられるかを熟考することが不可欠だと感じています。ブレインストーミングで生成AIを活用し、他の視点が得られないか確認すること、そして上司にこまめに相談して要点に漏れがないかチェックする姿勢も大切だと実感しています。

クリティカルシンキング入門

データが語る組織の新しい一面

データ加工で新たな発見をするには? データを加工することで、その特徴を理解できるようになります。最初は特徴がないように見えるデータでも、分解して可視化することで新たな特徴を発見できます。分解する際には、MECEを意識して多くの観点からアプローチすることが重要です。これにより、データの特徴をより深く理解することが可能になります。 組織の稼働状況をどう可視化する? 私は組織の稼働状況や勤怠状況を可視化する業務をよく行っています。しかし、データの切り口を考える際には、目の前の情報だけに頼ってしまうことが多いです。今回の学習を通じて、切り口を言語化し、応用するための新しい視点を得ることができました。 データ分析に重要な視点は何? データを分解する際には、When、Who、Howを意識して、多くの切り口をまず検討することが重要だと感じました。組織メンバーの業務の偏りを分析する際、これまでは組織毎や案件毎といった切り口で見ることが多かったですが、今後は役割ごと、入社年次ごと、グレードごとなど様々な切り口も加えて分析を行ってみようと考えています。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。

クリティカルシンキング入門

問題の本質を探る思考の鍛錬

本当の課題は何? 顕在化している問題をそのままイシューとして設定するのではなく、なぜそれらが生じているのか、本当の問題は何かを分析することが重要だと感じました。なぜなら、顕在化した問題に対して対症療法的なアクションを取っても、根本的な解決にはならないことが多いからです。しかし、本質的な課題を見つけるのは今の私にとって非常に困難であるため、思考を鍛える練習が必要とも感じています。 仕事のバランスはどう? デイリー業務と企画業務のバランスを考える際や、残業時間削減に向けた対策の検討など、さまざまな場面でこのアプローチは役に立つと思います。顕在化した問題に隠れている潜在的な問題を深く分析し、正しい対策を探っていきたいです。 事実の関連はどう見る? 見えている情報だけでイシューを設定するのではなく、なぜその事象が発生しているのかを考えるようにします。また、1つの事実から安易に結論を出すのではなく、複数の事実を関連づけ、問題の本質を考える癖をつけたいと思っています。情報を分析する際は、データを加工し、複数の視点からの検討を行うことも重要です。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

クリティカルシンキング入門

疑問が生む戦略の新視点

この施策はどうだろう? 店舗あたりの顧客数の増加や顧客単価という切り口から、ある大手ファストフードチェーンのここ数年の施策を振り返ってみると、理にかなっている点が多く見受けられます。論理的な整理を土台に、骨太なイシュー設定とクリエイティブかつ大胆なアイデアが融合しており、その戦略性に改めて感心しました。 大手の盲点は何だろう? 一方で、どれほど経験豊富な大手企業であっても、時代の変遷に応じた論点の見落としが、直近の転売問題のような大きなトラブルにつながる可能性が示されています。この点から、多面的な視点で論点を整理する重要性について学びがありました。 本質に迫るには? 今後は、イシューそのものに疑問を持つことから始めていきたいと考えています。そもそものイシューのレイヤーが適切であるか、提示された切り口が正しいかを再検証し、「そもそも」と遡りすぎて無駄な時間の重複が生じないかを意識しながら、今向き合うべきテーマとなっているかを見定めたいと思います。同時に、より定量的な分析をもとに、イシューとしての確からしさをさらに高めていく所存です。

クリティカルシンキング入門

問題解決に向けた視点の広げ方を学ぶ旅

問題をどう分解する? 解決したい問題を分解するためには、主観的な視点だけでは全体を把握することは難しいと感じています。特に対人関係の問題に関しては、自分の視点だけでなく、相手や第三者からの視点も考慮する必要があります。人は自分の考え方に偏りがちであり、考えやすい方向から物事を考える傾向があります。 提案の裏付けはどう探す? 現時点では、問題に対して効果的な提案をするのは難しいと考えていますが、相手や第三者の視点を意識し、広い視座と視野を持ってやや俯瞰的に見ることで、予想外の提案ができる可能性があります。しかし、その提案を裏付ける根拠の探し方がまだわかりません。 第三者の視点をどう養う? 利害関係がないと仮定した場合、どのような案が考えられるかを大量に書き出し、第三者の視点を養う練習をしてみようと思います。また、共通の問題について職場の同僚の意見を聞き、その内容を記録し、その方の考え方の偏りを見つけ出し、どの視点から考えているのかを分析してみることにします。それによって、自分自身も異なる視点を持ち出せるか試してみたいと考えています。

クリティカルシンキング入門

データを多角的に分析する力を養う

データの分解にどう立ち向かう? 今回、数値データを扱う際には、データを正確に整理し、重複や漏れがないように分解することを心がけました。例えば、年齢別のカテゴリ分けや売上を単価と数量に分解すること、あるいは工程を細分化することなど、多角的な視点で情報を分類することを意識しました。 顧客分析で重点をどこに置く? このようなデータの分解方法は、ソリューション販売の戦略を構築する際に非常に有用だと思います。特に、顧客層を地域別や人口密度に基づいて分析することで、どこに重点を置くべきかが明確になります。当社製品をどの地域や規模の顧客に訴求するのかを見極めることが、営業エリアやターゲットの設定に役立つと感じました。 営業活動の現状をどう見直す? 現状の営業活動についても、業界全体の数値データをいろんな視点で分解して分析しようと考えています。この分析結果をもとに、現在の営業状況とどのように一致しているか、またはどこでズレが生じているかを見極めたいと思っています。これにより、正しかった施策と改善が必要な点がより具体的に把握できると考えています。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

戦略思考入門

フレームワーク超克で見えた自社の魅力

フレームワークの苦手感は? フレームワークに対しては苦手意識がありましたが、目の前の課題を解決するためには、自分一人で思いつくアイディアや情報には限界があると痛感しました。そこで、フレームワークを使いこなし、自社、競合、市場の現状を正確に把握することで、自社のどの部分に付加価値があり、また他社と比べてどの点で優れているのかという視点から解決策を導き出したいと考えるようになりました。 連携不足はどう解決? 利用希望者は増えている一方で、事業所も次々と増加しており、競争が激化していく中で、自社内に多数の専門職が在籍している点は大きな強みです。しかし、事業所間の連携に課題が残っているため、この部分の改善が進めばさらなる強みにつながると期待しています。また、専門的な知識が十分でない事業所も多く存在するため、今後は知識量の向上に努め、差別化を図っていく必要があると感じました。 情報整理は何が肝心? いざ分析に取り組む際には、市場や競合の状況を事前に把握しておくことが不可欠です。皆さんは、どのように事前情報を整理しているのでしょうか?

アカウンティング入門

財務分析で道を拓く!経営戦略の新視点

貸借対照表の読み方とは? アキコとミノルの例から、貸借対照表の借方が集めた資金の使い途を示し、貸方が資金調達の方法を示すことを理解しました。これらは業種や経営方針と深く関連しており、企業ごとに異なる特色が反映されています。したがって、業種との比較を通じて経営方針を確認し、企業の貸借対照表(BS)や損益計算書(PL)が適切かを見極めることが重要です。 経営戦略の評価方法は? まず、自社のBSとPLをしっかりと読み解く必要があります。そして、競合他社との比較も行い、自社の経営戦略の妥当性を評価したいと考えています。特に弊社では、ROAとROEの改善が求められているため、それに基づいた議論ができるよう、BSやPLの分析力を高めたいです。 会計知識をどう補完する? そのために、自社のBSとPLを確認し、情報を整理していきます。理解が深まらない箇所や疑問点については、ChatGPTを活用しながら内容を把握するように努めます。また、さらなる理解を求めて自分で会計の書籍を読むことや、グロービスのオンライン講座で知識を補完していく予定です。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。
AIコーチング導線バナー

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right