クリティカルシンキング入門

課題解決力を高める3つの「視」の実践

イシューの立て方とは? WEEK1からWEEK5までの総合演習を2つ実践しました。これにより、課題(イシュー)に対する問いの立て方や共有方法を再復習することができました。しかし、分析や視点の切り口についてはまだ習慣化されていない部分があり、今後も努力を続ける必要があります。 チームでの課題共有をどう進める? 日々、様々な問い合わせや連絡が発生する中で、相手の求めている課題(イシュー)を明確にすることを部署内で共有していきます。インプットとアウトプットを繰り返すことで、これを習慣化し、チーム全体の課題解決力向上に繋げていきたいと考えています。 3つの「視」をどう活かす? また、3つの「視」を意識することが重要だと感じました。 1. **視点**:個人としての課題を考えるための着眼点や注目点。 2. **視野**:周囲を意識した広範囲の課題を考える。 3. **視座**:上司としての立場から課題を考える視点。 これらを日々実践し、課題解決能力を身に付けていきたいと思います。

データ・アナリティクス入門

ロジックツリーでプレゼン企画が大変身!

MECEの重要性は何か? 頭の中だけで何となくMECEになっていると思っても、実際には抜け漏れがあることが結構あると感じました。ロジックツリーを使うことで、他者にも伝えやすくなり、指摘をもらう際にも感覚ではなく論理的な議論になりやすくなる点は非常に有効だと思います。 プレゼント企画にどう活かす? 特にプレゼント企画などは使用する機会が多く、担当者それぞれのアイデアを取捨選択しながら決めることが多かったですが、ロジックツリーを活用すれば、その場限りのアイデアだけに頼らずに決定するフローを作成できます。その結果、蓄積・分析も容易になるでしょう。 企画立案での活用とは? 次回の企画立案時には、ロジックツリーをたたき台として作成し、提案することで、メンバー全員がロジカルに議論を進められるようにしたいと考えています。また、MECEの考え方を自身の視点として忘れないようにするとともに、メンバーの企画や提案に対するフィードバック項目の一つとして、全員で意識できるように努めたいと思います。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

戦略思考入門

共通認識が開く改善の扉

議論の進め方は? 同じテーマを複数人で検討する場合、効率的かつ効果的に進めるためには、目的やゴールに沿ってどのように議論を進めていくのか、検討すべき要素に共通の認識を持つことが不可欠です。これを整理しないと、各人が自分の関心に基づいて検討を進めてしまい、視点がずれてしまいます。 どうやって認識合わせ? 共通認識を形成するためには、まず検討対象を俯瞰的に捉え、漏れなく重複なく要素を抽出することが重要です。その際、3C分析、SWOT分析、バリューチェーン分析などのフレームワークが非常に有用です。 改善策はどうする? 具体的なアプローチとしては、まず自分が担当している事業について、これらのフレームワークを活用して分析を行います。そして、その分析結果を同じチームのメンバーと共有し、今後の改善策について議論することが求められます。特に、バリューチェーンのどこに課題があり、コスト分析を通じてどの部分がネックとなっているのかを明らかにすることが、改善策の策定に役立つと感じました。

データ・アナリティクス入門

学びを動かす日常の工夫

A/Bテストの意義は? A/Bテストの存在を知ることができ、業界ではそのような視点があまりなかったと感じました。また、week5はこれまでの中で一番難しく感じました。グループワークでAIの活用を聞いていたので、実際に少し取り入れてみました。動画で指摘されていたように、日常生活の中でこうした思考や手法を実践することが、身につけるために重要だと痛感しました。 転職と時間管理は? プライベートでは、転職の検討や残業削減の工夫、高額な商品の購入を見据えた時間の使い方について考えています。例えば、まずはどの仕事にどれくらいの時間がかかっているかを計測することから始める予定です。 研修と目標達成は? 一方、業務面では、研修担当として対応できる研修の分類や不足している部分を調査し、人材育成モデルとの紐づけを行いながら、研修内容の過不足を確認しています。また、年間計画の検討や売上目標達成に向けた具体的な行動計画の作成、社内合宿のアンケート結果の分析にも取り組んでいます。

マーケティング入門

STPで商品価値が変わる!?学びの実感

STP再評価だけで成長? 企業の事例を通して学んだことで、商品自体を変更しなくてもSTPを再評価するだけで、ビジネスを成長させることができると理解が深まりました。また、ポジショニングを検討する際には、自社視点ではなく顧客視点でポイントを絞って売り出すことの重要性を学びました。 コンセプト調査の重要性とは? コンセプト調査を行った際の結果分析時に、特にSTPの重要性を感じました。STPをしっかりと定めることで、その後のプロモーションや施策に一貫性を持たせることができると確信しました。また、新商品の企画を考える際には、ポジショニングマップを作成し、差別化ができているかの確認を行いたいと思います。 自社の強みをどう活かす? さらに、自社の既存商品をSTPにあてはめて分析することで、自社の強みや他社との差別性を理解できました。こうして理解した自社の強みを書き出し、顧客視点でも強みかどうかを再確認し、複数の強みをかけ合わせながら新商品の企画を構築していきたいと考えています。

データ・アナリティクス入門

代表値だけじゃない分析の魅力

代表値は何が最適? 代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、データの内容に応じて使い分けることが求められます。たった一種類の代表値だけを見てしまうと、判断を誤る可能性があるため、標準偏差も含め、データがどれだけ散らばっているか、もしくはまとまっているかといった視点も重要です。 データはどう分析? これまで契約データの分析では、各代表値をそれぞれの視点から確認し、常に多角的なアプローチをとってきました。これにより、一方に偏ることなく、データ全体の特徴をしっかりと把握することができました。CAGRを用いていた部分も、実は幾何平均の単年度バージョンとして捉えることができると考えています。 今後の判断はどう? 今後も、ただ一つの代表値に依存するのではなく、複数の指標を参照しながら、データ群にどのような特徴があるのかを判断したいと思います。そして、分析の目的に立ち返り、適切な分析手法やグラフの選択を通して、より正確な業務遂行を目指します。

クリティカルシンキング入門

営業プロセスの巧みな分解で成果倍増

どのようにプロセスを整理する? 営業成績を振り返る際に、プロセスをMECE(Mutually Exclusive, Collectively Exhaustive)に分解して整理するという視点が欠けていました。プロセスの分解自体は行っていたものの、その後の分析が不十分だったと感じています。今後は、この点を業務に活かしていきたいと思います。 問題解決に向けた分解思考 営業活動において、顧客を業界や職種で分解するだけでなく、自分の仕事のプロセスも細かく分解しました。その結果、どこに要因があり、何を解決すれば問題の特定につながるのかが明確になりました。このような分解という思考を、日々の活動に取り入れていきます。 課題特定のためのアプローチは? 具体的には、まず自分の営業プロセスを分解し、どこに課題があるか特定します。次に、顧客と受注の傾向も分解し、その中で自分の課題やポジティブな傾向を探っていきます。さらに、このアプローチを部下にも活用していこうと考えています。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

具体を引き出す対話の魔法

目的をどう明確化? 分析の目的を明確にすることの重要性を実感しました。データを活用する相手がどのような目的で情報を求めているのか、コミュニケーションを通して具体的に確認する必要があります。しかし、実際に会話をすると、目的が漠然としていたり、具体的な内容が伝えられないケースが多く見受けられました。そのため、抽象的な要素を具体的な内容として引き出すヒアリング力が非常に重要だと感じています。この過程で、仮説設定や比較対象の選定がより明確になり、全体の分析基準がしっかりと定まると考えます。 営業データは何を示す? また、営業活動においては、提供するデータがますます重要になっています。特に、自社製品の導入理由を明確に説明することが求められる中、競合他社との比較において自社製品を選ぶ根拠を明確なデータで示すことが必要です。営業と意見を共有しながら、データ活用の目的を具体的に明確化し、客観的な視点を保った説得力のあるデータ提供を行うことで、導入率の向上につなげたいと考えています。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right