データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

クリティカルシンキング入門

MECE実践!仮説検証で切り拓く発見

データ分析の意義は? データを分析する際には、元のデータをさらに加工できないかを常に考えながら進めることが大切だと実感しました。また、分析が進むにつれて様々な仮説が立てられるため、その仮説をどのように検証するかを考えるプロセスも重要だと感じています。 検証で何を得た? 仮説と検証を繰り返すことで、新たなインサイトを発見できることが分かりました。 MECEの活かし方は? また、データを分けるときには、MECEの考え方を取り入れることで、効率的なデータの分解と分析が可能になると学びました。今日からは、「モレなくダブりなく」の精神を意識したデータの分け方を実践していこうと思います。 報告で工夫する? 社内の業務データをまとめて報告する機会があった際には、これまでのフォーマットに従った報告だけでなく、自分から先んじてデータを加工し、新たな気づきを得る試みを行いたいと考えています。 全体像の捉え方は? 今後は、業務データを扱う際に、全体像を意識しながらMECEの視点を取り入れて課題に取り組むとともに、単一の切り口にとどまらず、層別の変数やプロセスごとに異なる切り口で全体を見渡す意識を持って取り組むようにしていきます。

アカウンティング入門

決算書で読み解く経営の物語

決算書から何を分析? 今回の学習を通して、決算書から企業の資金調達方法、コスト構造、利益の拡大メカニズム、そして固定費の大きさなど、経営戦略や特徴が多角的に読み取れることを改めて実感しました。単なる数字の羅列ではなく、その背後にあるビジネスモデルや企業の価値観を想像しながら分析する力が非常に重要であると感じました。決算書は、企業経営の実態を「見える化」する基礎資料であり、企業理解の土台だと再認識しました。 企業情報をどう活かす? 今後は、新聞や業界紙などの情報源に積極的に接し、さまざまな企業の経営情報に触れる機会を増やしていきたいと考えています。さらに、興味を持った企業の決算書を自ら確認し、分析することで、競合他社の財務状況や市場全体の動向を客観的に把握し、企業の立ち位置や戦略策定に役立てることを目指します。 財務分析のコツは? また、企業の決算書を取り寄せ、財務数値や構造を比較・分析するプロセスから学びを深め、得られた結果をもとに上司や経営層に提案できるような準備を整えたいと思います。継続して分析に取り組むため、毎月新たに一社以上の企業資料を読み込み、実務に結びつける努力を重ねながら、経営視点を確実に養っていく所存です。

データ・アナリティクス入門

問題解明の鍵は日常にあり

現状と理想の差は? 問題を明確にするため、ロジックツリーの活用法を学びました。あるべき姿やありたい姿と現状とのギャップに着目し、そのギャップがなぜ生まれているのかを問うことで、原因の特定につなげられると感じました。原因分析の手段としてMICEを意識し、問題を分解する取り組みが、より具体的な問題の明確化につながると思います。 MICEの見方は? 一方、MICEの視点で考えることはすぐには難しいと感じたため、日頃からの訓練が重要だと再認識しました。例えば、夕飯のメニュー選びにおいて、中華、和食、洋食といった大分類の中で、麺類や主食といった細かなカテゴリーに分けて考えるといった方法を試してみようと思います。 予算獲得の鍵は? また、予算獲得に向けては、各業務におけるあるべき姿を明文化し、メンバーと共有することが不可欠です。現状とのギャップやその原因についてMICEを用いて検討することで、新たな発見や打ち手が見えてくると感じます。さらに、あるべき姿を明確にするために、会議を通して現状のユーザーの声や法的根拠を把握し、理想と現実の差をしっかりと捉えることで、あいまいな課題の解消につながり、全体のストレス軽減にも寄与すると思います。

デザイン思考入門

実践から紡ぐ学びの軌跡

チャット改善はどう進む? 社内チャットツールの使い勝手向上を目指し、ユーザーインターフェースの変更や新たな機能の追加を試み、実際のユーザーからのフィードバックを収集・分析する取り組みを行っています。この試作プロセスにより、より使いやすいツールへの改善が期待できます。 オンライン改善の秘訣は? また、顧客向けのオンラインポータルについても、製品情報やサポート情報が見やすく、アクセスしやすいようにデザインや機能の改善を試行中です。実際の顧客の意見を反映しながら、ユーザビリティの向上を図っています。 試作で何が変わる? デザイン思考の「試作」ステップを業務に取り入れることで、従業員や顧客のニーズに応じた具体的なソリューションの提供が可能となりました。さらに、ユーザーを巻き込むワークショップにより、彼らの視点やニーズを直接把握することができ、実用的な提案を行う基盤が整いました。 テストはどう効果? 加えて、デザイン思考の「テスト」ステップをCXソリューションの提案プロセスに組み込むことで、顧客の実際の使用状況や要求を的確に反映した提案が可能となり、提案内容の精度および顧客満足度の向上につながる見込みです。

データ・アナリティクス入門

データから見る解決のヒント

問題解決ってどうする? 問題解決の手順を踏む中で、まずは「what(問題の明確化)」「where(問題箇所の特定)」「why(原因の分析)」「how(解決策の立案)」のステップを順に進めることが重要だと再認識しました。原因の仮説を立てるためにはデータ収集が不可欠で、仮説は単に立てるだけでなく、フレームワークを活用して幅広い視点から検討することで有用性が広がると感じました。その際、決め打ちせずにまずは自由に思考を発散させることも大切です。 数字から見える真実は? また、現時点では具体的な数字は得られていないものの、例えば事務処理に関しては実際の受付件数、処理件数、処理できなかった件数、人員数などのデータをまず取得し、そこから何が見えてくるかを仮説として立ててみたいと考えています。ただ「件数が増えているから忙しい、人手不足が原因だ」という決め付けに陥らず、複数の視点で状況を検討する必要性を感じています。 具体的な例には触れませんが、まずは上記のデータを確実に収集することが先決です。その上で、今回の問題解決のステップに沿って、場合によってはフレームワークの活用も検討しつつ、少なくとも複数の仮説を提示できるようにしたいと思います。

クリティカルシンキング入門

問いから始まる学びの軌跡

問いの重要性は? 「問い」から始めることの重要性を改めて感じました。まず、最初に問いを立て、その問いを共有することが大切だと理解しました。また、問いは立場や視点によって異なるため、誰にとっての問いなのか、何が求められているのかをしっかり見極めなければならないと実感しました。 記憶はどう保つ? また、一度学んだことは反復練習をしなければ忘れてしまうという教訓を得ました。意識的に時間を設けて、学んだ内容を繰り返し実践することで、実際の業務に効果的に生かすことができると思います。 どう企画に繋げる? 市場分析では、市場における問いを自分の立場を意識しながら考えることで、より具体的な課題の把握につながると感じました。一方、企画立案では、立てた問いをそのまま残しておくことで、企画のストーリーに筋が通り、納得性の高い企画が作成できると学びました。 練習はどう変わる? さらに、「問い」から始める練習を通じて、自分の思考の癖を自覚し、客観的な視点を持つことの大切さも理解できました。データを共有する際には適切に視覚化し、伝えやすいレイアウトを心がけること、そして現状の課題を的確に見極めながら進める姿勢が必要であると感じました。

データ・アナリティクス入門

分析で見える!自分の可能性を探る旅

分析目的をどう定める? まず、分析を行うためには、その目的を明確にすることが大切です。分析の核心は、物事を比較することにあります。適切な比較対象を選ぶ際には、「apple to apple」を意識し、時には目に見えないデータとも比較することが求められます。仮説を立てた上で、分析を進めることが重要です。また、分析結果を可視化する際には、その目的を常に念頭に置くことが求められます。 新しい業務の分析に必要な視点は? 新しい業務に取り組む際には、市場規模や競合他社、収支計画など、多岐にわたるデータを使用し、取り組む価値があるかどうかを分析します。コンサルティングなどの導入時においては、従来の定性的な説明に加え、コスト、業務効率化、収益への影響についてデータに基づく分析を行い、より説得力のある説明が求められます。 仕事の本質をどう理解する? 次に、「自分が何をしたいのか」を明確にし、自身の仕事の本質を正確に理解します。その上で、なぜ分析が必要であるのかを整理します。分析を始める前に仮説を立て、その仮説を検証するために必要なデータを収集します。最終的には、分析結果を適切に可視化し、周囲を納得させられるようにすることが重要です。

戦略思考入門

意思決定の成功法則を究める旅

なぜ現状を分析する? 意思決定において、どの提案が適切かを判断するためには、単に「どのように」進めるかではなく、しっかりと現状を分析し、要因と提案との整合性を意識することが重要です。考え抜かれた提案であれば、たとえ失敗しても次に活かせる経験となります。しかし、分析が不十分なまま失敗すると、その失敗自体が他の要因となり、同じ過ちを繰り返す恐れがあります。 どう提案を裏付ける? 提案は単なる仮説で行うのではなく、まずは現状をしっかりと分析することが求められます。提案は理由によってしっかりと裏付けられ、5W1Hを意識した具体的なものであるべきです。フレームワークの使用は時に面倒に感じられることもありますが、その効果性が高いため、必要な場面では妥協せずに活用していきましょう。 どう柔軟に対応する? 提案や資料作成においては、意思決定者の視点を意識しながら、想定外の事態が起こった場合でも柔軟に対応することが求められます。初めから完璧を目指すのではなく、限られたリソースの中で妥協せず効率的に進めるよう努めます。高次元での妥協を意識しつつ、人の意見を取り入れ、集合知としての折衷案を生み出すことを心掛けることが大切です。

戦略思考入門

選択と差別化の成功と失敗を学ぶ

どうして失敗を重視? 規模の経済や多角化について、成功例だけではなく失敗例も学びました。「なんとなくよさそう」という選択肢に飛びつかず、「うまくいかないケースはないか?」を意識して確認する必要があると感じました。 補足はどう工夫? 総合演習では、情報が足りない時にどのように補うかを考えながら取り組みました。日常生活でも、安易に選択してしまうことがあるのかもしれないと感じました。選択するかしないかを広い視野でとらえ、その背景を分析し、メリットとデメリットを正確に把握する必要があります。 どう差別化実現? 現在取り組んでいるペーパーレス推進の中では、「捨てる」ことと「他社との差別化」を両立する施策を意識しています。業界内の動向だけでなく、他業界での先行事例も注視しています。「なんとなくよさそう」で判断せず、定量的データを用いて根拠のある提案を行うよう努めています。 何を見極める? 定量的データを活用し、同業界だけでなく他業界の事例も広く集め、自社に活用できる部分がないかを検討しています。その際、自社の差別化につながるかどうかという視点を重視しています。また、ペーパーレス実現後の影響も考慮した施策を構築しています。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

データ・アナリティクス入門

標準偏差が拓く学びの新視点

データの全体像はどう捉える? 標準偏差を活用することで、データのばらつきを正確に把握でき、分析の全体像を掴むきっかけとなりました。平均値だけで物事を判断しないためにも、中央値など他の指標を併せて見ることの大切さを実感しています。 グラフで視覚的に理解できる? また、ヒストグラムは各グループの構成比を視覚的に捉えるのに非常に役立ちます。特に、世代などX軸の単位が明確なものの場合、グラフ化することで理解しやすくなると感じました。売上実績の分析など、データのばらつきを確認することで、より正確な施策の検討が可能になると考えています。 苦手意識は克服できる? 個人的には、以前は標準偏差に対して苦手意識がありましたが、全体のばらつきをとらえる重要な指標として積極的に活用する決意を新たにしました。さらに、ヒストグラムのように一目で内容を把握できるグラフ作成を通じて、プレゼンテーション時の相手の理解促進や、意思決定のスピード向上に貢献したいと思います。 分析の認識共有はどう進む? 今後の日々の分析においては、標準偏差やその他の代表値を取り入れ、データ全体の認識を共有することで、正確な判断に結びつけていきたいと考えています。

「分析 × 視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right