クリティカルシンキング入門

400文字で紡ぐ成長の言葉

基本文法の価値は? 小学校で習った基本の文法、つまり主語と述語は、シンプルでありながら大人になってもコミュニケーションの基礎として重要です。演習で改めて問われると、自分の日本語力が試されるようで、緊張してしまいます。仕事で文章を作成する際にも、同じような緊張感が必要だったと反省しました。 オンラインの必要性は? 近年、オンラインでのコミュニケーションが増え、社内外を問わずチャットツールが主要な情報交換手段となっています。相手に正確に伝えるためにも、正しい日本語を使うことが日々求められていると感じます。 確認と振り返りは? また、チャットでのやり取りにおいては、勢いで送信せずに必ず内容を再確認するよう心がけています。さらに、1週間に一度400文字を書くという取り組みについては、新人の頃に行っていた週次の振り返りを再開しようと思いました。

戦略思考入門

本質を捉える学びで効率的な目標達成へ

本質を見極めるには? 物事の本質をしっかり見極め、目標を効果的に達成するためには、大局的な視点で情報をバランスよく収集し、分析して考えることが重要だと学びました。特に目の前にいる顧客の言葉をそのまま受け取るのではなく、なぜそのニーズが生まれたのか、その背景や取り巻く環境の変化を考慮することが大切です。そして、全ての整合を取るのは難しいため、自分なりの判断軸や基準が必要です。 最短で目標を達成する方法は? 現在担当しているプロジェクトや組織マネージメントにおいて、最も効果的に目的を達成するために、論理的に考え、可能な限り最速・最短距離での到達を意識したいと思います。本質的なゴールを設定し、優先順位を決めたうえで逆算しながらプロセスを描くことで無駄を省きます。進行中は、様々な試行錯誤をし、臨機応変に軌道修正をしながら進めていきます。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

分析で気づく新たな視点: データ比較の重要性

データ分析での思考法とは? 「分析は比較なり」という言葉が印象的でした。これまで、データ分析といえばすぐに数値を操作してパーセンテージを計算し、グラフを作成することだと思い込んでいました。ですが、何より思考の部分が重要であることを教えてもらい、とても参考になりました。 オープンデータの課題はどう洗い出す? 現在、私は行政のオープンデータから課題を洗い出す仕事に取り組んでいます。規模が大きいデータを前にして、どこから手を付ければよいのか途方に暮れることもありました。しかし「まずは比較」のアプローチを念頭に置き、データを俯瞰して眺めることを実践してみようと思います。

「思い × 言葉」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right