クリティカルシンキング入門

説得力UP!論点・結論・根拠文章トレーニング

論点と根拠の関係は? 論点から結論、そしてその根拠を整理して伝える方法について学びました。相手に「Yes」と言ってもらえるためには、まず悩みや不安といった切り口を提示し、それに対する解消策を根拠として示すことが重要だと感じます。 伝達のギャップはなぜ? GAiLを利用する中で、会議や打合せで口頭で伝えたつもりの内容が、実際には伝わっていなかったことを再認識しました。そのため、日常的な実践が必要だと感じ、まずは文章でのトレーニングに取り組むべきだと思います。 簡潔文章の作成法は? メールや報告書、説明資料など、短く分かりやすい文章を作成する際には、論点、結論、根拠という構成が非常に有効です。相手の立場に立った根拠を示すことで、説得力を持ったコミュニケーションが可能になると感じました。 会話にも活かすコツは? 日常の会話やメールでも、何が論点で、どのような結論を導き、その根拠が何かを意識することが大切です。また、他者の文章や資料を読む際にも、同じ視点で内容を確認することで、自分自身の文章力も向上していくと実感しています。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

データ・アナリティクス入門

複数仮説で説得力アップの秘密

仮説検証の重要性は? ビジネスにおいて、仮説を立て検証することの重要性を実感しました。今回の学びでは、ひとつの仮説だけでなく、複数の仮説を立案し、その中から最も有効なものを選ぶプロセスが、偏りのない分析につながることを理解できました。また、3C分析や4P分析の演習を通して、具体的な仮説の立て方を練習する良い機会となりました。 経験の反応をどう見る? これまでにも仮説を提示した経験はありましたが、過去の経験では「それはあくまであなたの考えに過ぎない」という反応を受けたため、仮説自体の有効性に疑問を持っていました。これは、プレゼン相手の反応や自身の検証不足が原因と考えています。今後は、仮説を立てた後の検証作業にも、より一層力を入れて取り組んでいきたいと思います。 3C分析の効果は? さらに、実務において3C分析を用いた経験から、このフレームワークが多くの人を説得するために非常に効果的であると感じています。近い将来も、売上情報の分析にフレームワークを活用し、より多くの方に迅速に納得いただける方法を模索していきたいと考えています。

クリティカルシンキング入門

文書作成のスキルアップ!論理的思考で提案力向上

文書を書く際の気づきとは? 思ったより文書が書けないということに気づきました。他者に何かを説明するときは、相手の視点や状況に立ち、複数の中から最適なものを選ぶことが必要です。学んだこととしては、ロジックを立てる順番が重要であり、まず柱を立て、次に複数の案を出し、それを具体化するという手順があります。 レポート作成への応用法は? これをレポート作成や決裁申請書の起案の際に活用したいと考えています。思いついたことをすぐに書き始めるのではなく、まず考えて整理してから書くことで、第三者のチェックが容易になり、読み手に負担をかけることなく物事を進められると思います。 論理的な構造をどう整える? 具体的には、レポート作成や決裁申請書の起案の際には、まず論理の元となる柱を決め、次に帰納分解を複数出し、それを説明する案を具体化してロジックツリーを作ります。その後、全体の構造や意味が通るか、説得力があるかを確認する時間を取るようにします。さらに、必要に応じて第三者にロジックを見てもらい、視点の不足や論理のずれがないかを確認したいと思います。

クリティカルシンキング入門

伝え方に効く!見せる工夫の魔法

新たな発見は何? 今週の演習を通じて、自分が気づいていなかった新たな発見がいくつかありました。グラフで可視化するだけでなく、種類や配置など、相手に伝えやすい工夫が必要だと感じました。また、フォントやカラーといった文字の効果にも注目し、伝えたい内容を強調するためにアイコンを追加したり、表現方法を工夫することで大きな効果が得られる点が印象に残りました。 既存資料で苦戦? 業務では、社内用の資料やプレゼンを作成する機会が多いですが、既存のテンプレートに沿って作業することが多く、自分のアイデアを表現する余地が少ない状況です。以前、グラフを用いた可視化が予期せぬ反応を呼んだ経験もありました。 伝え方は工夫? 実践的な活用として、チームミーティングの資料やデータ管理における指標の提示に今回の学びを生かしたいと考えています。「伝えたいこと」を強調することで、共通認識の形成や具体的なアクションプランの構築につながると期待しています。今後は、プレゼンの体裁だけでなく、伝え方にも工夫を凝らし、より説得力のある資料作りを目指したいと思います。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

データ・アナリティクス入門

仮説が映す未来への挑戦

仮説はどう説得力増す? データ分析において、仮説を立てることは説得力の向上に大変重要な要素だと実感しました。過去、現在、将来といった各目的に合わせて、結論や問題解決といった違いがある中で、仮説の活用は説得力を高めるだけでなく、自身の仕事に対する興味や関心を引き上げる効果もあると学びました。また、仮説を用いる際には、その精度を高め、迅速に検証を進めることが求められます。 報告はどのように変化? 自身の分析結果を報告する際、従来は仮説が正しいことを説明することを重視してきました。ですが、必ずしも直接的な正当性の説明にとどまらず、仮説自体の説得力をさらに高めることで、より充実した報告ができると感じるようになりました。今後は、この仮説とデータの活用方法を意識して実践していきたいと思います。 検証はなぜ時間かかる? 一方で、仮説の検証には予想以上に時間がかかることが多く、深い分析や検証が十分に行えていない現状もあります。他の参加者がどのように仮説検証を進め、時間管理や分析の精度を向上させているのかをぜひ伺いたいと思います。

クリティカルシンキング入門

具体論理で説得力アップ

根拠をどう整理する? 伝えたいメッセージを成立させるためには、その根拠を適切な軸で細分化することが不可欠と感じました。たとえば、よく使われるQCDなどの観点から情報を整理し、それぞれに論拠を立てていく実践は、説得力を高める上で非常に有効です。 論理は整ってる? 一方で、論理的に記述したつもりでも、主語が不明瞭になったり抽象的な表現に陥ったりして、ロジックに瑕疵が生じるケースがあると自覚しました。こうした点を強く意識し、文章全体に具体性を持たせるよう努めることが重要だと感じています。 多角的視点は捉えた? また、複数の切り口から検討することで、より多角的な視点が得られることも実感しています。自社が大企業であるため、さまざまなステークホルダーの利害調整が求められるケースが多い中、各社の視点から論拠を分解する試みは、大きな意義を持っています。 表現法はどう選ぶ? 最後に、一番説得力を持つ表現方法は何かという問いについて、文章と図解のどちらがより効果的か、試行錯誤しながら最適な手段を選択する必要があると感じました。

クリティカルシンキング入門

データ分析の深さに触れる喜び

データ分析の楽しさとは? データの分析や加工を実際に自分で行えたことが非常に楽しかったです。Excelを使って学び直す経験も新鮮でした。データを複数の側面から切り分けることは久しぶりの学びでもありましたが、時間が限られているときにそれを実践するのは少し難しいと感じました。 数値を分解する面白さとは? 数値を扱う重要性や面白さを日常業務で感じることは年に数回ありますが、数値を分解していくと、表面では見えてこなかった関連性や有意差が明らかになるため、とても興味深いです。さまざまな切り口で分析することもありますが、アイデアが浮かぶときと浮かばないときがあるように感じます。 グラフ活用の重要性は? さらに、統計解析ソフトなどを利用すると、より面白い分析ができると思います。また、多様なグラフを作成することで、説得力のある説明が可能となると感じます。わかりやすく説明するためには、表よりもグラフの活用が重要だと思います。このような多様なグラフや可視化に関する技術も、データ分析とはまた異なる視点で学んでいくべきことだと思います。

データ・アナリティクス入門

売上アップの鍵は原因分析と多様な選択肢

課題解決のプロセスとは? 課題解決の近道は、原因をプロセス分解してアプローチすること、そしてボトルネックをきちんと把握することにあると思いました。また、正解がない中できちんとした判断基準を持ち、複数の選択肢を視野に入れておくことが重要です。 売上向上のための出発点は? 売上が上がらない理由の一つとして、ABテストを行わずに出来上がった広告を動かしたことが挙げられます。時間や様々な制約があったとしても、きちんとテストを行うべきだったと再認識しました。この経験から、原因をしっかり考え、複数の選択肢をイメージする必要性を感じました。 リブランディングの展望 現在、リブランディングも視野に入れ、分析や情報の精査をしています。売上が上がらなかった理由はぼんやりと見えてきているものの、説得力には欠けている状態です。これまでの考え方(what、where、why、how)を踏まえながら、原因をプロセスを追って分析していきたいと思います。そして、一つの選択肢に固執せず、複数の選択肢を検討しながら今後の展開に活かしていきたいです。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

数字と発想が織り成す学び

目的は何のため? 分析は、目的を明確にして「何のために行うのか」を意識しながらデータを取り出す必要があります。単にデータを抽出するだけでなく、複数の対象を同じ尺度で比較し、具体的な数値を導き出すことが重要です。 愛の価値は見つかる? また、「愛の値段」の算出方法は特に面白く、分析においてどの切り口や観点で取り組むかを工夫することの大切さを実感しました。普段あまり使用しない横棒グラフも、要素間の比較を行う際に試してみたいと感じています。 定量データは説得力? 加えて、数値化された定量データは説得力があり、誰にでも伝わるため、曖昧な点もきちんと数値化する習慣を身につけることが求められます。こうした分析手法は、得意先との商談、社内会議資料、さらには年度方針や計画の戦略立案など、さまざまな場面で活用できると感じています。 新たな視点を得る? 講義中の問いに対する回答を通じ、自分では気づかなかった多くの視点を知ることができました。その発想や観点を今後も取り入れながら、さらに深い分析に取り組んでいきたいと思います。
AIコーチング導線バナー

「説得」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right