データ・アナリティクス入門

数字でひも解く学びの裏側

平均値だけで大丈夫? 平均値だけでは現状を正確に把握できないという点に気づきました。B校の平均年齢が30歳であると、一見「大人中心のスクール」と捉えられがちですが、実際のヒストグラムを見ると低年齢層と高年齢層に分かれており、19~40代が希薄な“空洞”となっていることが明らかです。分布のばらつきを示す指標やデータの可視化の重要性を再認識する結果となりました。 利益ギャップは何? また、利益ギャップの分析では「売上=生徒数×単価」や「費用=講師人件費+販管費」など、各要素をツリー状に分解して寄与度を評価すると、生徒数の減少が最も大きな影響を持つことが分かりました。数字を軸に構造、原因、施策へと論理的に掘り下げるプロセスは、限られた時間の中で根本原因を見出す上で再現性が高く、非常に有用だと感じました。 スクールの違いは? さらに、A校とB校の年齢分布を比較することで、それぞれのスクールの課題と強みが浮かび上がりました。具体的には、A校は働き盛り世代が多い一方、B校は子供やシニア層が中心となっており、主要な顧客層が逆転していることが一目で分かりました。このように、セグメント別に指標を比較することで、各拠点固有の課題や有効な施策が明確になると実感しました。 仮説検証は正確? また、仮説を立てた上で講座の時間帯やキャンペーン履歴、交通網のデータなどを用いて検証を行う、仮説思考とデータ検証の往復が大変重要であると学びました。これにより、先入観に捉われず具体的な打ち手を見いだすことが可能になります。 ヒストグラムで理解? ヒストグラムという可視化ツールについても大きな学びがありました。年齢のような連続変数を度数分布として表示することで、山の位置や高さ、外れ値の存在、平均や中央値とのズレなどを直感的に理解しやすくなり、チーム内の共有や迅速な意思決定につながることを実感しました。 今後の視点は? これらの学びを踏まえ、今後は「平均ではなく分布を見る」「結果から逆算して要因を分解する」という視点を意識し、セグメント別の比較や仮説と検証のサイクルを高速で回すことで、的確な改善策を提案していきたいと考えています。 データ分析は万全? この手法はマーケティングデータの作成や報告のほぼすべての場面で再現性高く応用できると実感しました。例えば、月次KPIレポートではサイト訪問者の平均滞在時間だけでなくヒストグラムを活用し、離脱が集中する滞在秒数帯を明らかにします。また、指標をチャネル別やデバイス別に分解することで、最も寄与度の高いセグメントを特定することも可能です。 キャンペーン対策は? 新規顧客獲得キャンペーンでは、過去の結果を年齢と購買頻度の度数分布で可視化し、コンバージョンが低い空洞セグメントに対して仮説―例えばクリエイティブの不一致や配信時間帯の不適合など―を立て、次回のテスト設計へつなげるアプローチを検討します。 リード改善の鍵は? また、リードスコアリングモデルの改善においては、成約率を平均値だけで評価するのではなく、四半位範囲や標準偏差を活用してばらつきの大きい属性を抽出し、スコアリングの重み付けや閾値を再設定することでモデルの精度向上を図ります。 CX調査で何が? CX調査の報告書においても、NPSの平均値のみならずプロモーター・パッシブ・デトラクターの比率をヒストグラムで示すことで、具体的な要因を定量的に明示し、より効果的な施策提案への流れを作ることができます。 ROI分析の焦点は? さらに、広報や広告などのクロスチャネルROI分析でも、チャネル別平均CPAだけでなく、キャンペーンIDや日次CPAをヒートマップでまとめる手法により、特に偏差の大きい日やクリエイティブを特定し、原因の仮説検証を進めることで、改善アクションの精度を高めることができると考えています。 経営判断のサポートは? 最後に、経営層向けのダッシュボード設計においては、平均売上や総リーチといった数値だけでなく、パレート図や箱ひげ図を取り入れることで、主要顧客層の状況や外れ値の影響を直感的に共有し、部門横断の意思決定を加速させる仕組みを実装したいと考えています。 行動計画は具体的? 具体的な行動計画としては、まず今週中に主要KPIレポートの雛形を改訂し、ヒストグラムや箱ひげ図、パレート図を自動生成するツールを作成します。続いて、来週には主要指標を要素分解ツリーで可視化したダッシュボードを試作し、経営層へのレビューを実施する予定です。その後、2週間以内に過去のキャンペーン実績をもとに年齢や購買頻度でビン分けし、空洞セグメントの抽出ロジックを構築します。 改善プロセスの定着は? 今月末には空洞セグメント向けのテスト設計を完了させ、翌月にはリードスコアリングモデルの再学習と改善を実施する計画です。また、四半期ごとに寄与度分析レポートを自動生成し、改善施策の立案を行い、継続的に学習と検証を社内に蓄積することで、「平均値→分布」「結果→要因分解」という共通プロセスを定着させていきたいと考えています。

戦略思考入門

データで描く経営の未来

感情論よりデータは? 今週の学習を通じて、課題解決において感情論ではなく、客観的なデータに基づいた多角的な分析と、論理的に伝える力が不可欠であるという点を強く実感しました。タクシー業界の市場縮小、運転手不足、燃料費の変動リスクなど、一見ネガティブな情報も、なぜ自社にとって問題なのか、またその解決策がどのように経営に貢献するのかを具体的に示すことが重要だと感じました。例えば、配車アプリ導入の際には「便利だから」という感情論ではなく、実働1日1車あたりの運送収入の向上や燃料費削減といった定量的なメリットを提示し、説得力を高める必要があります。同様に、提携相手との関係では、懸念に対して新たな顧客ネットワークへのアクセスやノウハウ共有といった共存共栄のメリットを論理的に伝えることが重要でした。 実務でどう活きる? また、この学びは私の実務にも大いに役立つものです。これまで漠然と抱えていた課題も、現状を数値で把握し、その原因を深掘りすることで具体的な解決策へと繋げることができると考えます。特に、外食業態の現場では新メニュー開発や既存メニューの見直しにデータ分析の手法を応用することで、「現状維持は衰退」という視点から戦略的にアプローチできると感じました。顧客データを詳細に分析し、どのメニューが十分に売れていないか、また潜在的なニーズがあるかを客観的に把握することにより、食材原価の変動リスクを踏まえた仕入れルートの見直しや、ロス削減を図るメニュー設計など、収益性向上につなげることができます. 店舗戦略は何が鍵? さらに、店舗の集客戦略やマーケティング活動においても、周辺の人口構成や競合店の情報を詳細に分析し、ターゲット顧客を明確化することで、適切なプロモーション戦略を展開することが可能です。例えば、若年層が多いエリアではSNSを活用したプロモーション、高齢者が多い地域ではテイクアウトやデリバリーサービスの導入など、具体的な戦略を立案していきます。また、店舗の強みや独自性を明示し、効果的に伝えることで、顧客へのアピール力を高める狙いがあります. 人材育成方法は? さらに、従業員の育成やシフト管理の効率化にも今回の学びは役立ちます。従業員のスキルや得意分野をデータとして可視化することで、適切な人員配置を行い、少ない人数でも店舗運営の質を維持する工夫が求められます。従業員教育においては、単にマニュアルを渡すのではなく、売上データや顧客からのフィードバックを共有し、なぜそのメニューが支持されているのか、背景を理解してもらうことで、サービスの質を向上させる取り組みが重要だと感じました. 売上分析のポイントは? まずは、POSシステムの売上データを活用し、日次・月次売上だけでなく、メニューごとの販売数、時間帯別の客数、客単価、曜日別の変動などの詳細な数値を抽出し、現状分析を強化します。特定メニューの売上低迷が続く場合は、その原因が季節性、価格設定、競合店の影響のいずれかを深掘りするために、顧客アンケートや口コミ分析も併せて実施します. 会議運営をどう改善? 次に、分析結果を基に新メニュー開発会議の進め方を見直し、シェフのアイデアに頼るだけでなく、データに基づいた「売上改善」や「顧客ニーズへの対応」を目的とした会議運営を行います。具体例として、売上が低迷するランチメニューを刷新して客単価の向上を目指すといった目標設定を行い、食材選定、原価計算、試作の各段階でデータを活用しながら評価します。会議では、単なる味の評価だけでなく、競合との比較やターゲット層への訴求力など多角的な視点から議論を進めます. 情報共有はなぜ重要? 最後に、従業員間での情報共有と教育を強化することで、データと論理に基づいた経営判断ができるよう努めます。抽出した売上データや顧客フィードバックを定期的に共有し、各自が「なぜこのメニューが売れているのか」を理解する機会を設けることで、課題意識を高め、店舗全体の生産性と顧客満足度の向上につなげていきます.

デザイン思考入門

共感を導く情報設計の力

提言の進め方は? 普段は、自部門における業務改善提言をまとめる際、現状分析から課題の洗い出し、解決策の検討、そしてプロトタイプ作成にあたる「改善施策案」の作成まで、一連のステップを踏んでいます。その後、実際の現場にパイロット運用してもらい、評価結果を反映させたうえで全社展開するという流れで進めています。しかし、これらは経験則に基づいて実施しているため、精度については疑問を抱くことも多く、「本当にこれで良いのか」「もっと深く検討すべき点はなかったか」「チームにしっかり伝わっているか」といった不安がつきまといます。 情報設計はどう活かす? 今回学んだ「情報設計」では、ユーザーストーリーマップやカスタマージャーニーマップを用いて、一連の行動を可視化する手法が印象に残りました。仮説に基づいてコンテンツを洗い出し、ワイヤーフレームとして可視化することで、「誰に・何を・どのように」という視点を意識しながら情報の構成を検討する重要性を実感しました。また、モックアップ作成時にもアクセシビリティやユーザビリティを意識しつつ、現場の実情に合わせた設計が求められると感じました。 モックアップは要注意? 私の場合、業務改善提言に基づく施策案をプロトタイプとして捉えると、どうしても現場では具体的な作業方法や運用フローが前面に出やすくなり、結果としてモックアップになってしまうことが多いです。確かに、モックアップは現場の方々にとって分かりやすく、何をすべきかを直感的に提示できます。しかし、それが本当に効果的な施策であるかどうかは、ワイヤーフレームで情報の骨組みをしっかり設計し、基盤となるユーザーストーリーを正確に捉えることが必要だと改めて感じました。こうした視点を深く分析し、可視化することで、チーム内で課題を共有し、伝えることができると感じています。 共感で見える課題? また、プロジェクトの初期段階においては「共感」が非常に重要であると実感しました。先週、現場のエンジニアから「資料に説明が見当たらず、作業ミスが発生してしまう」との意見が出た際、彼らの状況や日々の業務背景を考えると、確かに説明不足は理解しやすい問題だと共感しました。一方で、別のメンバーが資料の他の部分で情報が補完されていると指摘するなど、一見対立する意見もあり、現場で働く人々の視点や状況に寄り添わなければ本質的な課題を把握し、改善策を導き出すことは難しいと痛感しました。 アイデアは整理できた? 今回のプロトタイピングでは、具体的なアイデア検討と自身の業務との関連付けを行いながら、意識すべきポイントを学ぶことができました。前回学んだ「言語化する」という手法と今回の「可視化する」という手法は、どちらも抽象的ながらも常に意識すべき要素だと感じています。情報設計、コンテンツ設計、そしてUI設計という一連の流れを通じて、体系的な実践方法を整理できたことは大きな収穫です。特に、ユーザーストーリーマップやカスタマージャーニーマップを用いてユーザーストーリーを正確に捉える点については、これまで疎かにしていた部分を改め、しっかりと実践していく必要があると強く意識しました。 目的を見失って? 一方で、どうしてもモックアップ作成に偏ってしまいがちな点、つまり自部署や自分の目的を優先してしまう傾向があることにも改めて気づかされました。あるメンバーが自作の資料に固執し、必要な対策が偏る事例を目の当たりにした経験から、業務改善その本来の目的である「ユーザーの目的」を見失わないためにも、情報設計を通じた体系的なアプローチの重要性を痛感しています。今後は、この学びをチームメンバーと共有し、偏った施策にならないように取り組んでいきたいと思います。

クリティカルシンキング入門

問いと構造で開く新たな気づき

どうして思考が進化? これまで「仕事の質は思考の質」という信念のもと、デザイン思考やクリティカルシンキングを学んできましたが、今回、構造化思考に基づく「モデリングによる可視化」の視点を取り入れることで、思考の深さと広がりが一段と増したと実感しています。 連動の仕組みは? 「問いを立てる」「構造で捉える」「全体像と要素を行き来する」というプロセスは、各々のスキルとして独立しているのではなく、互いに連動して初めて真に整理された思考につながると感じました。システムモデリングを活用することで、複雑な課題や状況を構造的に可視化できるだけでなく、「なぜそうなっているのか」「どこに本質的なズレがあるのか」というクリティカルな問いを支える土台が形成され、対話や資料作成における表現の精度や説得力が明確に向上したことが印象的でした。 聞き方はどう変わる? 現場でのヒアリングや議論においては、単に情報を受け取るのではなく、頭の中に構造モデルを描きながら話を聞くことで、問いの立て方が変わり、見えてくる情報の質も高まることを実感しています。こうした思考の流れを意識することで、相手の論点や曖昧な仮説も整理し、共通の理解を形成する助けとなっています。 学びの効果は? 今回の学びは、事業や組織の開発における構想フェーズ、すなわち対話や構想の整理、共通理解の形成に非常に有効であると感じました。新規事業の企画段階では、単にアイディアを列挙するのではなく、背後にあるニーズや構造的な背景に目を向け、因果関係や前提構造を可視化することで、抽象的な着想を現実的な構想へと橋渡しする力が求められます。 合意の仕組みは? また、組織開発の現場では、関係者間で異なる立場や視点が対話を困難にすることが多いですが、モデリングを通して共通の構造や相互理解の枠組みを示すことで、合意形成がスムーズになりました。抽象度の高いビジョンづくりや課題整理のワークショップにおいて、全体構造と個々の要素を行き来するプロセスは、議論の接続点を明確にし、実践的なナビゲーションとしての役割を果たしています。 問いが導く方法は? 今後は、論点整理の初期段階において「問いを起点に全体構造を描く」姿勢を習慣化し、実際の対話や企画立案の場面でモデリングを活用していきたいと考えています。具体的には、企画会議や構想段階のディスカッションで、まず本質的な問いを明確にし、それに沿って情報や仮説を構造的に整理していくことが重要です。さらに、コンテキストモデルや因果ループ図などを用いて思考の流れや対象の構造を可視化し、相手との認識の違いを明確にしながら議論を進めることで、建設的な対話と提案につなげたいと思います。 なぜ振り返ればいい? また、定期的な振り返りを行い、「問いの立て方」「構造化の質」「モデルの解像度」といった観点から自分の思考プロセスを見直すことで、見落としていた視点や過度な単純化に気づく機会を増やしたいと考えています。その経験をチーム内で共有することで、互いに思考を磨き合い、より高い解像度の意思決定と支援を実現していけると信じています。 モデリングの真髄は? このように、モデリングによる可視化のアプローチは、思考を組織的な資産として扱い、再現性のあるスキルへと進化させるための実践的な手法です。今後も実務の各フェーズでこの手法を取り入れることで、より本質的で説得力のあるプロセスを追求していきたいと思います。

データ・アナリティクス入門

仮説思考で切り拓く営業の未来

仮説の意味は? 今週の学習では、「仮説」とは、不確かな状況下で行動するために立てる仮の答えであるという理解を改めました。特に、「結論の仮説」と「問題解決の仮説」という2つの分類が印象に残りました。 検証のプロセスは? 結論の仮説は、戦略や提案を行う際に、まず仮の答えを設定することで議論の出発点を作り、その後の検証と修正を通じて精度を高めるアプローチです。一方、問題解決の仮説では「What→Where→Why→How」といった段階的な掘り下げにより、原因と対策を導き出すプロセスが紹介され、思考の整理に非常に効果的だと感じました。 現場で有効か? これらのフレームワークは、限られた情報の中で迅速な意思決定が求められるビジネス現場において、強力なツールとなると実感しています。私は、AIやデータ分析関連のソリューションを扱う営業を担当しており、顧客の課題特定や提案内容の作成において、不確実な情報を扱う機会が多い中、学んだ「仮説思考」が非常に有効だと感じました。 仮説検証のコツは? 例えば、初回訪問時に顧客がまだ課題を明確に言語化していない場合でも、「業務プロセスの非効率があるのではないか」「蓄積されたデータがうまく活用されていないのではないか」といった仮説を立てることで、仮説検証型のヒアリングが可能となります。これにより、単なる情報収集に留まらず、仮説に基づいた深掘り型の対話で本質的な課題に近づけると感じました。 提案の説得力は? また、提案の段階においては、「ある部署では意思決定が属人的で、データドリブンな仕組みの導入により業務効率を向上できるのでは」という結論の仮説を基に提案を設計することで、ストーリー性のある説得力の高い提案が可能になります。商談時間が限られている中で、このような仮説をもとにしたアプローチは非常に重要と感じました。 失注の理由は? さらに、失注や案件停滞の原因を検証する際にも、「なぜ受注に至らなかったのか」という問題解決の仮説を設定することで、次回以降の提案の質を高めるフィードバックループを構築できると感じました。 商談前の工夫は? 具体的な取り組みとしては、まず初回商談前に「業界特性・顧客規模・職種」などの観点から、課題仮説とニーズ仮説を2~3パターン想定し、ヒアリング項目に落とし込むテンプレートを自作しています。たとえば、製造業では「設備点検や不良検知にAI活用のニーズがあるのでは」といった仮説を用意し、仮説検証型の商談を組み立てることで、短期間で核心的な課題に迫るという方法です。 案件停滞の原因は? また、受注が見込まれていたものの急に停滞した案件については、どのステークホルダーが懸念しているのか、どの提案要素に説得力が不足していたのかといったWhy型の仮説を設定し、上司やチームとの定例レビューで検証しています。これにより、再提案やフォローアクションの精度を高め、案件化率の向上を目指しています。 アウトプット文化は? さらに、営業週報や朝会において、「この案件は〇〇という仮説でアプローチします」といった発言を推奨し、仮説をしっかり言語化してアウトプットする文化を醸成しています。こうした取り組みは、個々の思考の質の向上やナレッジの蓄積につながると実感しています。

リーダーシップ・キャリアビジョン入門

行動と意識で拓くリーダー像

リーダーシップに必要な行動とは何? リーダーシップとは、リーダーにフォロワーがついてくる現象を指します。そのリーダーシップには、行動が重要な要素となります。行動は、能力と意識の掛け算で決まります。つまり、リーダーは目に見える行動を通じて評価されるのです。行動しなければ、リーダーとしての資格を失うとも言えます。行動の引き出しを増やすためには、能力や意識を高めなければなりません。どんなリーダーになりたいのか、その目指す姿をイメージすることが大切です。 任せるときの注意点は? 仕事を任せる際には、いくつかのポイントに留意する必要があります。まず、具体的な指示を出し、どこまでの範囲を任せるのか、共通の認識や合意を取りましょう。また、業務の背景をしっかりと伝え、その業務の目的や意図、全体像も説明することが重要です。さらに、サポート体制を整え、相手の能力を見極め、必要に応じてフォロー体制を構築しておくことも必要です。 「行動=能力×意識」とは? 印象に残ったこととして、「行動=能力×意識」という考えがあります。行動の引き出しを増やすには、能力や意識を高めねばならないという点や、目に見える行動を通じて評価され、行動しないリーダーは失格であることが挙げられます。学び方のコツは、「考えを言葉にする」「普遍的な教訓を引き出す」、そして「自分に引き寄せる」ことです。 自分のリーダーシップをどう見直す? 自分に置き換えて考えたとき、能力や経験があると自信を持って行動でき、リーダーシップを発揮できていることがあります。しかし、未経験で自信がない場合には、意識が低下し、行動に移せないことが多いです。これは特に課題解決のアドバイスをする場面で顕著です。経験や感覚に頼った業務遂行は効率的ではなく、正しい指導にも繋がらないため、今後は論理的思考を身につける必要を感じました。現在、クリティカルシンキングを学びながら、その重要性を強く感じており、それを具体的に言語化できたことが嬉しいです。 目指すリーダー像の具体化 目指すリーダー像は「周囲から頼りになる存在で、どんな状況でも諦めずにゴールへ導くリーダー」です。特に「頼りになる」という言葉には、話しかけやすいという親近感を含めたいと思っていますが、現状では話しかけにくいリーダーになっているかもしれません。そのため、もっと気軽に話しかけられる雰囲気を作ることも意識していかなければと考えています。 組織内での信頼構築法は? リーダーシップを発揮するための意識を高めるためには、次のようなことを心がけています。課題解決の場面では、前向きな発言を促し、相手の意見を謙虚に聞き、熱意を持って共に行動します。また、身近なお手本となるリーダーの協力を得ることも重要です。例えば、話しかけやすい雰囲気を作っている管理職を観察し、アドバイスをもらうことで、自分がどう見られているかフィードバックを受けていきたいと考えています。 能力向上に必要な思考法とは? リーダーシップを発揮するための能力を高めるためには、論理的思考力の定着に努めます。ナノ単科のクリティカルシンキングの講座を通じ、自身の能力の底上げを図る計画です。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

データ・アナリティクス入門

分解の先に迫る成功のヒント

売上分解のポイントは? ライブ授業で、伝統工芸品の売上低下の原因を分析するワークに参加しました。その際、思いついた要因に飛びついてしまうと誤った結論に至ることを身をもって実感しました。事例を読むと、さまざまな要因が一気に頭に浮かびますが、まずは「売上」をどのように分解し、各要素で問題を明確にすることが大切です。具体的には、問題の本質をWhatの視点で整理し、Whereで該当箇所を特定し、Whyで原因を分析、Howで解決策を立案するというステップを忠実に踏む必要性を感じました。 原因検討の視点は? また、原因を検討する際には、マクロとミクロ両面からの視点が求められることにも気づきました。普段から外部要因にも興味を持ちつつ、自社の業務や販売プロセスを細かく分解して分析することで、フレームワークの精度を向上させる努力が必要だと実感しました。さらに、実数と率の両方を確認するという基本的なポイントが、自身の分析手法において抜け落ちていたことにも気づかされました。 店舗運営の見直しは? 店舗業務においても同様に、業務を分解しボトルネックを解消する手法を取り入れたいと思います。現在の店舗業務は煩雑で無駄が多いと感じていましたが、ある店舗では人員を削減した結果、業務効率が向上し生産性が上がったという事例を経験しました。この経験から、最適な人員配置を再考し、労働分配率を指標として理想的な店舗運営を模索する必要性を認識しました。 工程分析の進め方は? そのためには、まず店舗の業務内容を細かく分解し、どの工程にボトルネックがあるかを洗い出します。具体的には、各作業にかかる時間や担当人数を数値化し、店舗間で比較を行います。比較指標は、優先順位をつけた上で、フレームワークを活用して要因の検証を行います。検証結果から仮説を立て、それを元に対策を立案することが最大の目的です。対策は、すぐに実行できるものと、長期的に計画的に実施すべきものとに分けて検討します。 環境変化への対応は? 法改正や業界環境の変化といった外部要因に柔軟に対応しつつ、業務効率向上に努めることは簡単ではありません。しかし、業務を数値化し経年変化を追うことで、後からさまざまな要因との関連性を振り返り、分析できると考えています。 実行計画の具体策は? 具体的なアクションプランは以下の通りです。   What:労働分配率が高いという問題を認識する。 ① 業務の洗い出しを今期中に行う(Where)。 ② 問題と考えられる業務を数値化する(今期中に実施)。 ③ 比較指標を立て、要因の検証を行う(今期中)。 ④ 店舗間の比較を来期上期に開始する。 ⑤ 結果を集計し、仮説を立てる作業を来期上期に実施する。 ⑥ 対策を立案するのを来期下期に進める(How)。 以上の手順を踏みながら、各ステップを着実に実行していくことが、問題解決への鍵となると感じています。

データ・アナリティクス入門

振り返りの力で成長戦略を掴む!

問題特定の大切さとは? 目の前にある問題に対する「原因と打ち手」をまず検討しがちですが、最初に解決したい問題を明確にすることが重要です。いきなり原因に飛びつくのではなく、問題箇所を特定することが肝心です。その際、思考が広がりすぎないように、結論のイメージを持つことも大切です。 分解することのメリットは? 問題箇所を特定するためには、まず問題を分解します。このとき、解決に役立つような発見ができそうな分解方法やデータが得られる分解方法を選びます。分解した情報をもとに分析することで、問題の解像度が上がり、問題箇所が特定できます。 どうやって説得力を高める? 数字の根拠に基づいたストーリーを持つことも重要です。やみくもに分析するのではなく、そのストーリーを客観的に考察するよう心掛けていました。これにより、合理的かつ説得力のある提案が可能となります。 論理思考力をどう活かす? 論理的思考能力を高めるため、次の学習テーマとして考えています。この力はGAILでも必要とされるため、今後の学習に役立てたいと思います。 提案活動における新しい視点とは? クライアントへの提案やプランニングにおいては、自社メディアを使った広告やタイアップのプランニング、提案が効果的です。「未来のありたい姿」を目指して次のステップを踏むことが実践的であると感じました。 1. ありたい姿(施策のゴールやKPI)を数字で設定 2. ありたい姿を分解し、どの変数の影響が大きそうかを絞り込む 3. 複数の仮説を設定し、優先度の高いものに取り組む 4. レポートで成果を振り返る 成長戦略には何が必要? 自社メディアの成長戦略立案においては、WEBサイトの各種数値やSNSのインサイト数値をもとに成長戦略を立てます。その際、まず現状とありたい姿を設定し、次に問題箇所を特定するというフローを踏み、社内でディスカッションしていきたいと思います。 どのように実務に活かす? まずは講座をしっかり復習し、自分の思考のクセを修正して、客観的かつ合理的な提案と判断ができるようになりたいです。問題解決ステップを実務に取り入れ、実践を通じて使いこなせるように練習します。 効率的なプランニング方法は? クライアントワークにおいて、全ての案件に個別対応するのは難しいため、ありそうなKPI別に考え方のフレームを整理しておくと効率的にプランニングできそうです。 他部署との連携促進のコツは? 自社メディアの成長においては、社内のミーティングが打ち手の議論から始まることが多いので、そのやり方を変える必要があります。他部署を説得し、自分が率先して現状とありたい姿の設定、問題箇所の特定を整理します。そのうえで、「こういう仮説をやってみませんか?」と複数の仮説を提案します。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

マーケティング入門

顧客ニーズを見抜く!ビジネス成功の鍵

顧客ニーズをどう把握する? 商品を何にするかを決める際に最も大切なのは、やはり顧客のニーズを把握することです。「それは当然だ」と思われるかもしれませんが、いくつか重要なポイントがあります。 まず、顧客自身がなぜその商品を購入したのか、あるいは欲しいと思ったのかを自覚していないケースが多いということを理解する必要があります。次に、ウォンツとニーズの違いを正確に理解することも重要です。ウォンツとは、ある特定のものを欲しいと思う状態で、顧客自身が自認しているため、競合による価格競争が起きやすくなります。一方、ニーズは満たされていない状態があり、それを解決したいと思っているものの、顧客自身が認識していないことが多いです。ニーズを捉えることができれば、それがビジネスチャンスにつながる可能性が高まります。 ペインポイントをどう見つける? このための手法も理解する必要があります。ウォンツを捉えるには、アンケート調査や購買データの分析が有効です。一方でニーズを捉える手法としては、顧客にインタビューを行い、様々な視点からの質問を通じて心理を掘り下げる方法や、顧客の行動を観察して商品の利用状況を見る方法があります。また、カスタマージャーニーを描くことも有効です。 事業を成功させるためには、顧客が困っているポイント、つまりペインポイントを見つけ出すことが第一歩です。しかし、それは容易ではありません。そのため、手法については理解を深め、実践の中で改善していくことが重要です。 顧客との信頼構築法とは? 顧客のペインポイントを探る手段として、定期的なコミュニケーションが欠かせません。顧客の困りごとは時の流れとともに変わっていくため、常に新しい情報をキャッチアップし、変化を把握するように努めます。 さらに、会社の強みとして柔軟に企画化できる点を活かし、見つけたペインポイントに対して企画に昇華できるものがあれば、すぐに素案を作成し、顧客に提示して反応を見ます。好反応が得られれば、迅速に実行することを繰り返していきます。 効果的なチームコラボの秘訣は? また、営業やマーケティングメンバーとの定期的なミーティングを通じて、各メンバーが顧客から引き出した困りごとをシェアします。この中で、具体的なアクションプランについてもアイデアを出し合い、すぐに実行に移していきます。 デプスインタビューの極意 最後に、インタビューのスキルを高めることも重要です。デプスインタビューは難しいものですが、それをこなすにはどの情報を広げ、どの深さで掘り下げるかといったガイドラインが必要です。このスキルは自分自身で率先して学び、その知見をメンバーに共有することでチーム全体のスキル向上につなげます。

マーケティング入門

マーケティングの魅力を探る:日常から学ぶ旅

マーケティングの基本とは? 「マーケティング」とは、「顧客に買ってもらえる仕組み」を考えることです。これは「自社の商品の魅力を顧客にきちんと伝えること」と「顧客が自社の商品に魅力を感じてもらうこと」の両方が成り立たなければなりません。 顧客訴求の工夫をどうする? 商品が顧客に選ばれない場合、商品そのものを変えたり価格を下げるのではなく、適切なターゲット顧客にシフトチェンジしたり、商品の魅せ方(商品名やパッケージなど)の工夫で顧客に訴求することが重要です。これがマーケティングの面白さです。 顧客の真のニーズは? また、マーケティングのポイントは、顧客の真のニーズ・欲求をしっかり見極めることです。それを身につけるためには、日常的に身の回りにある商品やサービスに注意を払う癖をつけることが大切です。 旅がもたらす学びとは? 「争いの多くが自分と異なるものへの理解不足や偏見、拒絶など、多様性がないことが原因で起こる」と言われています。そのため、「旅」を通じて異文化を理解・体験することは、争いの抑制に役立ちます。私は、平和産業である「旅」を通じて、世界という壮大な学びの場で多くの人が楽しみながら世界を知り、平和について考えるきっかけを創り続けたいと考えています。 資本主義と社会貢献を両立 現在、訪日旅行の営業に従事しており、オーバーツーリズムや地方創生、震災復興といった持続可能な観光に関する課題解決に取り組んでいます。しかし、会社としては社会貢献だけでなく、売上や送客などのビジネス成果も求められます。そのため、社会貢献とビジネスを両立させ、顧客にとって魅力的なツアー商品を企画する必要があります。それには、旅行業界の現状や課題を分析し、周囲を納得させて共に行動することが求められます。 私の学習方法とは? 日々の業務がイレギュラーが多いため、休みの日にまとめて学習しています。動画を視聴し全体の流れを把握した後、何度も繰り返し視聴しながら内容を自分なりに要約・まとめることで知識を定着させています。これは、自分に最も合った学習方法です。 GLOBIS学び放題の活用 以前からGLOBIS学び放題にも加入しており、期限が決められている方が集中して取り組めます。毎月視聴する動画を計画し、学んだ内容を自社や業界に当てはめるようにしています。日常から「この商品にはどのようなマーケティング戦略があるのか」を考える習慣を持ち続けています。 新たなスキルを学ぶために 現在はGLOBIS学び放題の継続に加え、データ・アナリティクスとアカウンティングのナノ単科を受講しています。

「多い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right