データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

ABテストで効果を最大化する方法とは?

問題解決ステップの理解をどう深める? 問題解決の4つのステップについて学んだ中で、特にWhy(原因分析)とHow(解決方法の立案)、そしてその手法としてABテストについて理解が深まった。ABテストはシンプルで運用や判断がしやすく、低コスト・低工数・低リスクで実行可能なため、非常に活用しやすい。実施の際には、目的設定、改善ポイントの仮説設計(何でも変えるのではなく、意図を持って比較しやすくする)、実行(十分なデータ量を確保)、結果検証の流れが効果的である。ただし、Web広告の場合には時間帯や曜日、プラットフォームなど他の条件が異ならないように注意が必要だ。 ABテストで問題解決の精度を高めるには? さらに、ABテストは「データ分析を通じて問題解決の精度を高める(Check)」と「仮説を試しながらデータを収集し、よりよい問題解決につなげる(Act)」を迅速に行うことができるため、非常に効率的だ。 例えば、メルマガでイベント告知を行う際にABテストを活用すれば、それぞれ訴求する内容を変えて、どの訴求ポイントが効果的かを検証することができる。しかし、解決案をひとつに絞るのは良くないので、SNS投稿など別のアプローチも併用して検証する必要があるだろう。 問題解決の全体像を把握するには? これまで、ランディングページ(LP)作成や広告を打つ際、一度行ったABテストの結果に満足して長期間使用していたことを反省。常に仮説を持ち、様々な角度から検証して改善していくことが必要だと感じた。また、問題解決の4つのステップ(What→Where→Why→How)の順番を意識し、単に解決策を考えるだけでなく、その全体像を把握することにリソースを費やすことを心がけたい。

クリティカルシンキング入門

今日の気づきが未来を創る

グラフはどう選ぶ? グラフ作成にあたっては、伝えたい内容に応じて適切な様式のグラフを選ぶことが基本です。伝えたいメッセージに合わせた数字を用い、分かりやすく誤解のない表現をするため、特にY軸のスケール設定に注意する必要があります。 文字装飾の秘訣は? 文字の装飾については、シンプルさを心掛けます。伝えたい要素に応じて適切なフォントや色を選択し、アイコンは視認性を損なわないものを使用することで、情報の見せ方全体が整います。 情報提示の工夫は? また、情報を提示する際は、単なる事実の羅列にとどまらず、メッセージ性を加えることが大切です。受け手に情報を探させることなく、視線の流れを誘導しながら、強調すべき点を的確に示す工夫が求められます。メッセージとグラフや表の内容に整合性があるかを再確認することも忘れてはなりません。 データ発信の要点は? 例えば、収支や収益、材料費、患者数といった様々なデータを定期的に発信する際、このような視覚化の工夫が大いに活かされます。事実の単なる提示に留まらず、具体的なメッセージを含めることで、経営情報だけではなく学術的な発表の場においても、受け手にとって分かりやすい資料となります。 伝え方はどうする? データ分析の結果を職員に提示する場合、棒グラフや折れ線グラフなどの基本的なグラフの種類やY軸のスケールの適正さを見直すことから始めましょう。グラフのタイトルにはシンプルでありながらもメッセージ性を加え、情報を詰め込みすぎないよう注意が必要です。また、伝えたい内容に合わせた適切なフォント、色、装飾を選ぶとともに、装飾はシンプルに留め、スライド上で受け手が情報を探す手間を省く工夫をすることが求められます。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

リーダーシップ・キャリアビジョン入門

リーダーシップとデータ活用で未来を拓く

リーダー姿勢はどう? リーダーの本質は、つき従う者が存在することであり、信頼がなければ従う者はいないという点にあります。したがって、リーダーは自ら行動を起こし、組織のあるべき姿勢をメンバーに示すことが重要です。また、目標の重要性をメンバーにしっかりと理解させる必要があります。 困難にどう向き合う? 目標達成の過程では、必ず困難や課題に直面します。その際に、リーダーが逃げたり、メンバーに責任を押し付けたりすると、信頼は得られません。メンバーは、実務能力だけでなく、困難や課題にしっかりと向き合う意識を持つことをリーダーの行動を通じて見ています。 CRMで何が変わる? 現在、マーケティング、戦略、商品企画業務に従事していますが、職場でのCRMデータ活用はまだ十分に浸透していません。そこで、CRMデータを活用したマーケティング戦略と商品企画を目標に掲げています。具体的な分析結果をもとに啓蒙活動を始め、メンバーにこの意義を共感してもらうことが重要です。自らの事例を分かち合い、部会などを通じて分析目的やデータの切り口を発表させることで、職場でのCRMデータ活用を普及させています。 以下のステップで活動を進めています: 1. 目標設定と部内での課題提起(実施済) 2. 自身の分析事例の明確化(実施済) 3. 他メンバーへの目標と取り組みたい内容の明確化(12月) 4. 他メンバーが実施した分析手法とその目的の明確化(12月から2月) 5. メンバーからの事例を集め、集合知として事例集を完成させる(3月) このプロセスを通じて、組織全体でCRMデータの活用を深め、効果的なマーケティング戦略を構築することを目指しています。

クリティカルシンキング入門

切り口が切り拓く学びの可能性

データは何を伝える? 表やグラフを用いてデータを可視化すると、数字そのものだけでは見えなかった切り口が浮かび上がり、新たな示唆を得ることができると感じました。単なる数値比較だけでなく、比率の違いを明確に示すことで、より深い理解につながります。 年齢の背景はどう? また、年齢などの属性を分解する際は、機械的な年代区分に頼らず、その背景や特性を考慮することが重要だと改めて実感しました。単一の切り口に固執せず、同じ年齢層内でも別の観点から分析する工夫が求められると感じます。 切り口の秘訣は? 切り口を設定する際は、When/Where/Howといった観点を取り入れることで、網羅的かつ多角的な分析が可能になります。たとえ一つの切り口で顕著な特徴が見えたとしても、それだけに満足せず、さらなる検証を重ねることが大切です。 提供方法は適切? 実際に、生命保険のある支払事由発生状況の数値データを、年代別や発生時期といった切り口で分解し、営業現場に提示した経験があります。しかし、この講義を聞いて、その提供方法が目的に十分沿っていたのか、またはもっと細かく分解する余地があったのかと自問する機会となりました。今後は、まず自分なりに目的を明確にした上で、When/Where/Howの観点から再度切り口を検討したいと考えています。 新たな切り口は? せっかく取得したQ2のデータを活用し、まずはどのような切り口が設定できるのか、単純な年代別ではなく異なる観点からの分解が可能かどうかを試してみようと思います。そして、ある程度データを分解した後は、とにかく可視化に努め、動きながら検証を進めることの重要性を再認識しました。

データ・アナリティクス入門

分析の「比較」効果で迷い解消!

分析の基本: 比較の重要性とは? 分析は比較であるというシンプルな理解に到達しました。以前は、数字から何を見出すべきか分からず複雑に考えていましたが、シンプルな視点からスタートすることの重要性を学びました。ただし、正しい比較対象がなければ、正確な分析はできません。このことに関連して、"要素をそろえる"という部分については、さらに実践的な学習や本コースでの深掘りを行いたいです。 効率的な分析設計のために必須なことは? また、グラフなどの見せ方を決定する以前に、分析する目的を設定すること、特に依頼された場合はその確認が大事だという点も理解しました。これにより、システムテストの品質評価やベンダー選定時など、具体的な場面で分析の質を向上させることができると考えています。 データ分析における注意点とは? これまでの経験では、依頼時に目的が曖昧な状態で受け取ることが多く、データの分析において何をすべきか判断がつかなくなり、結論を出せないこともありました。今後は、以下の3点を重視して取り組む予定です。まず、やみくもにデータを加工せず、目的の確認と仮説立てを確実に行うこと。次に、分析は比較を念頭に置くこと。そして、比較対象を分析の目的に沿って選定することです。 依頼者とのコミュニケーションで何が重要? 依頼者からは、目的の確認や必要な分析の方向性をしっかり聞き取ることが重要です。分析を始める前に目的を明確にするステップを必ず取り入れるべきだと感じました。その際、仮説をある程度考えると良いと思いました。また、仮説を立てる際には、比較対象が適切かどうかを依頼者と事前に合意することで、さらにスムーズに進められると感じています。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

「データ × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right