リーダーシップ・キャリアビジョン入門

仕事の任せ方で変わる部下の成長

任せ方の見直しは? 自分の仕事の任せ方が、相手にとって過度な負荷になることがあると知りました。 選択にリスクは? 演習では、データ入力の後にどんな仕事を任せるかというワークがありました。私は、いきなり経営陣にプレゼンする資料を作成させるという仕事を選びました。当時の私はこれが最適だと思って選択しましたが、その選択にはリスクがあることが示唆されました。 成長重視で良い? 成長や経験に重点を置きすぎると、部下の能力や気持ちが追いつかないことがわかりました。個人的には追いつかなくても良い経験だと思っていましたが、仕事の成果に重点を置くとリスクがある選択であり、部下のモチベーションにもリスクとなることを学びました。 新人育成はどう? これから新しく配属されるメンバーの育成を担当することになります。新人育成では、お客様との相談業務を行えるようにするのがゴールですが、すぐには難しいため、少しずつ任せることが必要です。今回の学びは、この育成業務に大いに活かせます。 既存メンバーの活用は? もちろん、既存メンバーに対する仕事の任せ方としても活用できるスキルなので、意識して使っていきたいと思います。 ゾーンの境界は? まずは新規メンバーの育成に活用します。相手の能力や気持ちを確認しながら、ストレッチゾーンになりうる仕事を任せていきたいと考えています。具体的には、ストレッチゾーンとコンフォートゾーン、パニックゾーンの境界線を探りながら進めていきます。 目標再設定は? 次に、既存メンバーへの目標進捗ミーティングに活用します。今期は3ヶ月が過ぎ、状況も変化しているので、ミーティングを設定し、どんなことをどのくらい、どのように行ってほしいかを再設定したいと思います。部下が前向きに取り組める部分を確認し、再設定を行います。

戦略思考入門

意思決定の極意:選ぶ勇気と捨てる技

感情とデータ、どちら? ビジネスにおける意思決定では、「捨てる(選択する)」という判断が必要なことがあります。限られた時間や資源の中で業績に貢献するための選択を行う際、感情的な理由に基づく判断は避けるべきです。「創業時から続けてきたから」「やめると処理が面倒だから」などの感情論を優先すると、業務が増え続け、効率が低下します。捨てるという判断には、定量データを参考にして指標を設定することが重要です。 定量と定性、どう? 中には「顧客とのつながり」や「担当者との関係性」などを指標にしている場面もあります。確かに、定量的なデータに基づく判断は重要です。しかし、何を具体的に取捨選択するかを決める際には、定性的な考え方も柔軟に取り入れることが有効だと感じました。すべてを定性的な考えだけで進めるのではなく、一定の根拠を持って選択肢を絞り込みつつ、関係者からの意見も取り入れながら精査することが大切だと思います。 施策の見直しは? 私たちのチームで行っている施策には、利益に対する投資対効果が出ていないものも少なくありません。人員が減り、残った社員への負担が大きくなりつつあります。中長期的な効果を見据えて進めている施策もありますが、現状では工数が増え、残業の増加やクオリティの低下が問題となっています。今回学んだ「捨てる」という概念を活用し、進行中の施策を棚卸しし、本当に今行うべきかを整理し、優先順位を再考したいと思います。 効果の測定はどう? まずは施策が生み出している利益や売上について数値的データを集めることから始めます。そして、実際にかかっている工数を把握し、投資対効果を測定します。短期的な成果を目的とする施策と中長期的な成果を目的とする施策にそれぞれ指標を設定し、優先順位を明確にし、自分のタスクに落とし込んでいくつもりです。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

データ・アナリティクス入門

挑むデータ、拓く未来

データで信頼築ける? データが少ない状況では、医者の診断も検討はずれになりがちです。そのため、血液検査や各種データの収集、統計や原則に基づいた仮説の設定、そして一定期間の経過観察と検証を重ねることが求められます。こうした一連のプロセスは、日常生活の延長線上にある行為とも言え、直感に頼るのではなく、データを根拠とした理論的な意思決定に楽しさとやりがいを感じています。 どう伝えるのが良い? 日本の人口のごく一部がクリスチャンであり、その中でも特定の宗教団体に所属する会員はさらに限られています。残りの多くの人々に対して、回復された福音をどのように伝えるかという大きな課題に取り組んでいます。SNSやインターネット、テレビ、新聞、雑誌、口コミ、広告トラック、アドバルーンなど、さまざまなメディアを駆使し、目標達成の手法を模索中です。 伝わりにくいのは? もし、ひとりの会員が教会のことを知らない多数の人々に対して、漏れなく情報を伝えられたなら、その印象は全体に広がるでしょう。しかし、伝達だけではなく、クリック率やコンバージョン率といった指標を通じて、実際に人々の生活に喜びをもたらす変化を実現するまでには、段階的にその数が絞られていくのも事実です。それでも、たとえひとりのためであっても、自分のデータ分析が役に立つのなら、人生を賭ける覚悟で取り組むべきだと感じています。この講座と出会い、周囲から良い影響を受けられていることに感謝しています。 成果の極意は何? 毎週、成果を最大化するためのアイデアを考える時間を意識的に持ちたいと思います。インスピレーションが降りることを期待しながら、今週はABテストを実施してみようと考えています。データと真摯に向き合いながら、突破口を見つけ、進むべき道を探し続けたいです。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

データ・アナリティクス入門

あとひと手間!四段階で切り拓く解決力

どう問題解決する? 問題解決の基本プロセスとして、「What → Where → Why → How」の4つのSTEPを学びました。プロセスを細かく分解し、複数の選択肢を洗い出し、根拠をもって絞り込むことの重要性を強く感じました。日常の業務において、これらのステップをいくつも行き来しながら問題の原因を探る手法は、非常に実践的だと実感しました。 視点を変える意義は? また、仮説を立てる際には、問題に関わりがありそうな要素だけでなく、それ以外の視点にも目を向ける考え方が有益だと学びました。対概念で物事を考えるアプローチは、固定概念に囚われず幅広い視野で問題解決に取り組む姿勢を養うための大切なポイントです。 ABテストの真意は? さらに、ABテストを活用して施策の効果を比較し、条件を揃えた上でデータを分析するプロセスは、仮説検証の精度を高める上で非常に有効だと感じました。仮説を実践しながら効果を測定し、次のアクションにつなげる一連の流れは、今後の分析業務にも大いに役立つと思います。 離脱理由は何か? 加えて、ファネル分析によってユーザーの利用段階を明確に分解し、どのプロセスで離脱が生じているかを把握する手法も印象的でした。漏斗のように段階ごとに数値を追うことで、課題がどこにあるのかを具体的に把握できる点は、現場での運用改善に直結する大切な視点です。 実践で成長する? 全体として、これらのアプローチを繰り返し実践することで、柔軟かつ論理的な問題解決能力を養えると感じました。定量分析やアンケートを活用し、他者の視点も取り入れた説得力のある提案や、チーム目標の設定など、今後の実務や運用計画にも直結する内容で、非常に有意義な学びとなりました。

データ・アナリティクス入門

ABテストで見える進化の軌跡

どうプロセスを分解する? どこに問題があるかを明確にするため、プロセスを段階ごとに分解することが重要です。まず、問題発生箇所(Where)を複数の切り口で特定し、それぞれに対してABテストを実施することで仮説検証を行います。こうした手法は、効率的なコストパフォーマンスに寄与すると同時に、その後の具体的な取り組み(HOW)を事実に基づいて策定するために欠かせません。 どうデータを把握する? 私は製薬会社でMRを担当しており、担当エリアの製品が伸び悩んでいる状況をデータ分析によって明確に把握しました。売上や市場シェアの推移を詳細に検証することで、次のアクションに向けた具体的な問題点の特定が可能となりました。たとえ、担当者固有の感覚や直感に頼りがちな部分があっても、事実ベースの行動こそが仮説検証を丁寧に進める鍵であると実感しています。 何が効果的なABテスト? 具体的なABテストとしては、Aパターンではメディカル専門部署との同行訪問を実施し、Bパターンでは他施設での成功事例を共有する取り組みを行いました。一定期間のテストを経て、どちらのアプローチがより効果的であったかを定量的に評価し、その結果を基盤に最適な施策をエリア全体に展開する方向性を見出すことができました。 どう成長を促進する? 担当エリアの製品成長を促進するための手順は、まず現状把握として売上や市場シェアを分析し、成長が停滞している顧客層を見定めることから始まります。次に、影響力のあるキーパーソンや波及効果の大きい対象をリストアップした上で、仮説を設定しABテストを実施します。その後、テスト結果を定量的に比較し、最も効果が高い施策をエリア全体に適用し、次のアクションに反映させるという流れで進めています。

戦略思考入門

規模の経済性で印刷業務を改善する方法

規模の経済性とは何か? 実践演習を通じて、生産数量が増えることで1個当たりの固定費が減少すること、すなわち「規模の経済性」という用語を初めて知りました。しかし、単純に発注量を増やすだけでなく、需要のバランスや原材料の供給、品質、在庫管理の問題など、多様な要因を総合的に検討する必要があると実感しました。この考えは、私の業務である資材の印刷費にも応用できそうです。例えば、需要の確認や原材料費、印刷部数などについて、過去の経験に頼るのではなく、常に現状に合わせて見直す必要性を感じました。 戦略的思考をどう実践する? 総合演習では、業界の数値や状況をフレームワークで整理し言語化することで、自分が考えていた施策とは異なる施策の可能性を見出せることもありました。「戦略的思考」の3つの要点を達成するためには、適切なゴールを設定し、そこに至る道筋を明確化することが重要であり、それを他者に理解してもらうために言語化することを業務でも実践していきたいと思っています。 印刷費管理の課題とは? さらに、印刷費の管理では、大量印刷による倉庫管理費や廃棄コストについても見直しが必要です。紙の原価が上昇している現状において、常に需要を確認しながら印刷の必要性を再考することが求められます。これに対して、顧客ニーズや印刷利用数のデータを基に、毎回印刷部数とその必要性をメンバーと共に確認していく提案を進めていきたいです。 フレームワーク活用の重要性 また、総合演習から学んだ3C分析やPEST分析などのフレームワークは、実際に自分の業務で使ってみることによって初めて身につくと感じました。これらの手法を用いて、自分の考えを他者と共有し、適切なゴールや対応策を探求していきたいと思います。

クリティカルシンキング入門

受講生の振り返り文 --- 視覚化のコツ:スライドデザインの秘訣

スライド作成の重要性とは? 視覚化のポイントとして、読み手の存在を意識してスライドを作成することが重要です。人間の目線の動きを考慮し、タイトルと構成の整合性を保つ必要があります。強調したい部分には装飾を加え、データは一つにまとめるなど、情報提示に工夫を凝らしましょう。特に、相手に情報を探させないように気を配ることが求められます。また、情報を表すグラフは用途に応じて使い分けることが大切です。 読み手を意識した文章作成法 良い文章の作成も同様に、読み手を意識することが肝心です。文章は目的を抑えつつ、読み手に理解しやすい内容で構成されていることが求められます。冒頭のアイキャッチでまずは興味を引き、リード文で引きつけて読み進めてもらうことが重要です。また、読み手に応じて文章の硬さや柔らかさを調整し、読みやすい体裁を整えることも忘れずに。 効果的な報告書や提案書の作成法 上司への報告やクライアントへの提案時には、スライドを作成する機会が多いでしょう。数字を報告する際には、単にファクトを並べるのではなく、伝えたい部分をグラフなどでわかりやすく表現することが重要です。提案内容をしっかりと読んでもらうためには、スライドのアイキャッチを意識し、文章の体裁を整えることが求められます。 課題分析の視覚化がもたらす効果 事業部の課題分析を行う際には、数字のデータをもとにスライドにまとめて報告することがあります。普段は数字の羅列で伝えることが多いため、グラフ化や色付け、強調ポイントの設定などを通じて、情報を探させないスライドを作成するよう心掛けましょう。スライドの中に含まれるタイトルや文章の体裁を整えることで、見るだけで伝えたい課題が明確に伝わるように工夫することが大切です。

「データ × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right