データ・アナリティクス入門

意識改革と比較で切り拓く学び

重要な学びは? 今週の学習では、以下の3点が特に重要であると感じました。まず「分析は比較である」ということ、次に「apple to appleの重要性」、そして「生存バイアスに注意が必要」という点です。 無意識な比較はどう変わる? 特に最初の点については、以前は無意識に行っていた比較を意識的に捉えることで、物事の見え方が大きく変わることに気づきました。実務においても、分析の際に「何と何を比較するのか」という問いが自然と浮かぶようになり、この意識を今後も大切にしていきたいと思います。 分析手順はどうする? これらの学びを踏まえ、現在実施している分析(今期の部内目標に関連するKPI設定)では、まずどのような目的で何と比較するのかを明確にしてから作業を始めるつもりです。具体的には、まずノートに手書きで目的と分析に関連するデータの種類を書き出し、思考を整理してから、実際にデータの収集と加工に取りかかる予定です。 apple比較の範囲は? また、apple to appleの重要性やデータ加工については理解が深まりましたが、実際の業務ではどこまでをapple to appleとみなすべきか、また意味のあるデータをどのように加工していくかについて、皆さんと議論できればと考えています。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

クリティカルシンキング入門

仮説検証で広がる学び

イシューはどう特定? イシューの特定は容易ではなく、常に分解を行わなければ混乱に陥りやすいと感じています。常に「イシューとは何か」を意識し、その切り口となる仮説を用意しつつ、多角的に検証する必要があります。実際、以前は思い込みで打ち手を考えていたときに比べ、約30倍もの時間を必要とすることを実感しました。 打ち手は何が有効? クライアントの現状に対し、どの打ち手が有効かを検討する際、これまで見慣れたSNSや特定のプラットフォームだけに頼るのではなく、リアルな情報も加味しながら、あらゆる角度からイシューを特定する重要性を改めて認識しました。 仮説の検証はどう? イシュー特定のためには、直感に頼らず、常に仮説を立てた上でデータを分析することが欠かせません。仮説の検証が十分に進まない場合は、別の仮説を設定し、さまざまな視点から考察する習慣を身につけることが大切だと感じています。 構造再考はどうすか? 自身の業務に照らし合わせると、クライアントの課題特定についてはまだ不十分だと感じました。ピラミッドストラクチャーを用いた際に根拠が不安定になる場合は、根拠を補足するための情報を集める必要があるか、もしくは一度構造を解体して再考する選択肢も考えるべきだと思います。

データ・アナリティクス入門

視点が変わる数字の物語

視点と標準偏差は何? 「分析は比較である」という考えから、視点やアプローチの違いが明確に見えてくることを学びました。数学が苦手な自分にとっては難解な点もありましたが、標準偏差の活用方法などを理解できたのは大きな収穫です。また、単純平均、加重平均、幾何平均、中央値といった代表値と、散らばりを示す標準偏差の違いについても理解を深めることができました。 集約方法はどうなっている? これまではエクセルで作成できるグラフからなんとなく情報を把握していたのに対し、今回体系的に数字の集約方法を学んだことで、今後はどのように数字を集約すべきかを意識して活用していこうと思います。特に幾何平均は初めての使用なので、さらに調査を進める予定です。標準偏差についても、その考え方から算出方法を追求するのが面白いと感じました。 分析の流れはどう進む? 前回からの繰り返しになりますが、分析のアプローチ―目的の確認、仮説の設定、データ収集、仮説の検証―を守りながら、視点と手法を適切に用いることを今後も意識していきたいと思います。幾何平均や標準偏差はまだ完全に理解できていないため、さらに勉強を重ねる必要があると感じています。テストの品質評価においては、標準偏差や中央値の考え方を取り入れていく予定です。

データ・アナリティクス入門

ひたむき仮説で未来を創る

仮説設定の意義は? 講座を受講して、データ分析のテクニックを学ぶことができました。しかし、分析そのものはAIに任せることが可能であり、本当に人間に必要とされるのは、データ分析の目的を明確にし、適切な仮説を設定する能力だと実感しました。正解に飛びついてしまいがちな思考停止の傾向を反省し、より良い仮説を見出すために、あきらめずトライ&エラーを重ねていきたいと考えています。また、当たり前を疑う力や、本質的な課題を見極める力、さらには分類のスキルを養うことの重要性も感じました。これらは次週以降や実践の場で活用していきたいと思います。 内部監査の視点はどう? 私は内部監査を担当しており、より鋭く価値ある提案ができるよう、今後はさらに良い仮説を立てる努力を重ねるつもりです。自分の考えや視点の狭さに日々反省しながら、「この事実から何が言えるのか」という問いに徹底して向き合っています。 現場改善はどうする? また、狭い視点に陥らないために、マネジメント視点やクリティカルシンキングを意識するとともに、現場の状況を十分に踏まえた提案ができるよう努めています。具体的には、何が問題なのか、どうすれば現場が改善されるのかをデータを裏付けに、しっかりと整理して提案していきたいと考えています。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

クリティカルシンキング入門

明確な数字が導く説得の道

売上目標は具体的? 売上目標を具体的な数値で設定し、グラフを活用することで、経営判断やプレゼンの質を向上させる手法が印象的でした。まず、漠然とした課題ではなく、明確なイシューを特定することが重要です。イシューが明確になったら、データや異なる切り口を用い、ピラミッドストラクチャーで論理を整理するのが効果的です。また、イシューは「問い」として常に意識し、考えているうちに方向性がブレないようにメモを残すことが推奨されます。 数字と論理の関係は? 具体的には、「売上目標〇〇億円」と数字で目標を定め、日時、週次、四半期、年次といった各種のグラフを目的に合わせて作成する手法が有効です。また、ピラミッドストラクチャーを意識して、①イシューの特定、②論理の枠組みの構築、③適切な根拠で支えるというプロセスを繰り返すことで、より説得力のある資料づくりが進むと感じました。 施策の意義は伝わる? 今回の学びは、実際の融資交渉や新規事業の場面で資料作りに役立つとともに、社内で売上目標を設定する際にも、「なぜこの施策が必要なのか」が伝わる具体例を示すことの重要性を実感させました。今後は、チーム内でこれらの考え方を共通言語として活用し、より具体的でわかりやすい議論を進めていきたいと思います。

デザイン思考入門

共感から始めるデザイン思考の魅力

人間中心の考え方とは? WEEK1のライブ授業で特に印象に残った点として、共感から始まる人間中心の考え方がありました。また、「万人受けするものは売れない」という教訓から、常に「誰のために作るのか」を念頭に置くことの重要さを学びました。さらに、相手の気持ちなど目に見えない部分まで含めて考える必要があることが強調されていました。そして、自分の感情を色で表現し、それを伝えることの難しさも実感しました。 デザイン思考に潜む魅力 デザイン思考において、優しさや愛情がその根底にあるのではないかと感じ、より興味が湧いてきました。普段、私はtoCの業務に携わっており、満足度や継続利用率の向上に向けたコミュニケーションを行っています。これまではなるべく全員が満足できるものを提供しようと考えていましたが、今後は誰に届けたいのかを意識していきたいと思います。 3月のイベントに向けた準備 3月のイベント開催に向けては、次のステップを考えています。前回の参加者データを確認し、目的に合ったターゲットの再設定を行います。また、データの整理やその理由付けを行い、社内で相談の上最終決定をします。そして、訴求内容を変更し(サムネイルや文言の調整)、開催後には前回との比較や効果検証を行う予定です。

リーダーシップ・キャリアビジョン入門

面談でメンバーの成長を引き出せ!

面談の目的は? 今回の講義では、面談の目的を相手の動機づけと成長を促すことに置くことが重要であると学びました。これを念頭に置くことで、より効果的な面談を実施できると感じました。 評価準備は万全? 準備段階では、評価の根拠を明確にし、効果的なフィードバックを用意することが肝心です。さらに、期首の期待を確認することで、現状とのギャップを明確化し、具体的な改善点を見つけていくことができると再認識しました。 面談の進行は? 面談の進行では、まず挨拶と感謝の言葉を述べることから始め、面談の目的をしっかりと説明することが重要です。続いて、ポジティブなフィードバックを行い、評価の説明や期待と改善点の提示、サポートの提供を経て、本人からのフィードバックの受け入れと今後の目標設定を進める具体的なステップが大変参考になりました。 学びをどう実践? 今回の学びを活かし、今後はメンバーの動機づけと成長を促す面談を実施していきたいと思います。特に、具体的なデータや事例を用いた評価の説明や、エンパワメントや動機づけ要因を考慮したサポートの提供は、メンバーのモチベーション向上に不可欠であると実感しました。このアプローチを実践し、チーム全体のパフォーマンス向上を目指します。

クリティカルシンキング入門

問いと実践で描く未来

講師の教えはどう響く? 講師の先生がおっしゃった「問いを明確にする、残す、共有する」という三大原則が特に印象に残りました。Bリーグの分析は、私にとって苦手な分野で、最初はどうしたらよいか皆目見当がつかず、焦りと不安が募りました。しかし、講師の先生が数値の整理や分類、グループ化といった手法を丁寧に、わかりやすく説明してくださったおかげで、時間をかけてでも自ら手を動かし、頭だけでなく目や手で確認する習慣を身につければ、確実に改善できると感じました。手間を惜しまない姿勢が、すべてにつながると改めて実感しました。 目標と評価はどう整理? 私のチームでは、今期の目標として、社員の業務目標の内容や難易度の見直しと評価の公平性の確保に取り組んでいます。約200人分の目標や評価の甘辛を分析し、見直しを行う必要があるものの、現状では何が問題でどの観点を是正すべきかが明確になっていません。そこで、今回学んだ手法を参考に、まずはチームで現状を把握するための問いを立て、評価項目や難易度設定の前提条件を整理しました。その上で、社員ごとの実績データを可視化し、評価のばらつきの要因を仮説として見出し、関係者との対話を通じて観点を精緻化することで、より納得感のある基準作りに取り組んでいます。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

クリティカルシンキング入門

仮説から紐解く学びのヒント

どの切り口で捉える? ある事象のデータを分解する際、まずは仮説を立て、切り口を明確に設定して可視化することで、精緻な結果を導き出すことができると感じました。 本当の答えは? また、目の前にある「いかにも」正しそうな答えに安易に飛びつくのではなく、一旦冷静になり、本当にその答えで問題ないのか疑問を投げかけ、深掘りする姿勢が大切だと実感しています。 どう分解すべき? さらに、データを漏れなくダブりなく分解することが、本質にたどり着くために重要であり、この考え方は日常業務にも大いに活用できると考えます。 グラフは説得力? 具体的には、新商品企画の提案などで顧客データを分析する際、この手法が大いに役立つと感じています。視覚化されたグラフは、商品提案の信頼性を伝える上でも非常に有効です。 数字で伝える? また、数字を用いた説明を普段の業務に取り入れることで、他部門とのコミュニケーションがスムーズになり、その必要性をより明確に伝えることができると考えています。 発想はどう磨く? 最後に、仮説の立て方や切り口の持ち方は状況に応じて変化する部分もあり、どのような発想が最も効果的なのか、その上手なやり方についてもぜひ意見を聞いてみたいと思いました。
AIコーチング導線バナー

「データ × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right