データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

議論と実践で広がる学びの輪

学びはどう活かす? ライブ授業では、講座の振り返りを行い、学んだ知識を実際の分析に生かす取り組みをしました。これにより、受講前と比べて明確に得たものがあると実感しました。 意見交換はどう効く? グループワークを通じては、自分の意見の推敲や新たな視点の獲得に大変役立ったと感じています。各人の考えを共有する中で、議論が深まり、より効率的に分析に取り組む方法についても考える機会となりました。 実践で何が見える? 実践演習では、講座の振り返りに十分な時間をかけることで、手を動かして考えることの重要性とともに、手を動かさずに思考することの大切さにも気づくことができました。フレームワークを活用しながら、分析のバランスや順序を意識して取り組む姿勢が印象に残っています。 目的と仮説の行方? また、目的の明確化や仮説設定の重要性を再認識しました。何を伝えたいのか、どのような問題を解決したいのかを最初にしっかりと考えることで、効率的な分析が可能になると感じました。ただし、仮説設定の段階でも実際に手を動かして考えたほうが良い面もあるため、両方のアプローチを意識することが大切だと思いました。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

クリティカルシンキング入門

熱くも冷静に!自分を見つめる瞬間

本当に目的は達成できた? 目的を見失わず、考えた答えが本来望んでいた結果に至るようにする必要性を実感しました。人は「考えたい」「考えやすい」という性質があるため、無意識のうちに偏った考えに陥っていたことを、自分の過去の経験から認識しました。 批判思考の本質は? また、クリティカルシンキングは、一朝一夕で身につくものではなく、日々意識して考え方を変えていく努力が求められます。ここでいう「クリティカル」とは、他人を批判するのではなく、まず自分自身に向けられるものだと理解しました。 会議中の一工夫は? 具体的には、ミーティング中に自分の考えや発言が偏っていないか、さまざまな角度から検証することが重要です。上司や部下との報連相、コミュニケーションの場面でもこの姿勢が活かされると感じます。また、一日の終わりに、その日に学んだことをどのように活用したかについてメモを取ることも有効です。 感情のコントロールは? 議論の中で熱くなったり、感情的になる場面では、特に偏った考えに陥りやすいと思います。このような場合、どのように冷静さを保ち、自分を客観的に見つめる方法があるのでしょうか?

クリティカルシンキング入門

思考の壁を乗り越えて未来へ

どんな制約に気づいた? 思考の偏りや自分自身の制約に気づくことができたのは、大きな発見でした。自分の中にもう一人の存在を意識し、三つの視点から問題に向き合うことで、答えが最適なものかどうかを多角的に考える大切さを学びました。 どの論点を整理? 論点を書き出した後、具体的な内容から抽象的な概念へと移行するプロセスに苦手意識があったため、これを何度も繰り返すことで習得を目指しています。また、「長く考えても考え方が変わらない」というアドバイスには大変納得し、今後の思考法を見直すきっかけとなりました。 活かす方法は何? 今後は、この学びを会社の仕組みづくりや新規事業の検討、また部署のマネージメントといった場面で活用していきたいと考えています。学んだ内容を都度書き出し、思考の開始時に見直すことで、従来の思考の癖に引っ張られず、新たな発想を引き出すよう努めたいと思います。 なぜ原点に戻る? さらに、まず方法論を考える前に、なぜそれを行うのか、目的は何かという基本に立ち返り、グループワークや振り返りを通して考え方そのものを磨いていく姿勢を大切にしていきたいと考えています。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

クリティカルシンキング入門

現状を突き詰めるイシューの力

何に注目する? イシュー、すなわち今直面している課題を明確にする方法は、さまざまな場面で活用できると感じました。会議の場面や日常の問題に対して、まず何にフォーカスすべきか立ち止まって考えることの大切さを再認識しました。また、ビジネスの現場では問題を引き起こす要因が複数考えられますが、その中でどこに手を打つべきかを組織内で確認し、共通の認識を持つことで、問題解決力が向上するのではないかと思います。 現状分析で何が見える? 現状の環境を正確に分析し、そこからイシューを導き出して、皆で共有することが何より重要だと認識しました。 組織見直しはどう? 私が所属する部署では、ある部分に手当てをすれば別の部分に歪みが生じるという調整が必要な状況が見受けられます。今後は、量よりも品質に焦点をあてる環境にあり、まさに思考や業務の転換期にあると感じます。目指すべきゴールや我々の役割を日々実践として語り続ける一方で、今本当に解決すべき課題は何かをもう一度しっかりと見つめ直す必要があると考えます。将来的な姿を踏まえ、現状の組織体制や目的、あるべき姿の見直しを行うことが適切だと思います。

データ・アナリティクス入門

比較で解き明かす分析の魅力

分析の苦手意識はどう変わった? 分析は比較なり、という言葉をきっかけに、これまで抱いていた「分析」という言葉への苦手意識が和らぎました。分析を「要素に分解し、比較する」とシンプルに捉え直すことで、データ分析の目的や方法を改めて見直す機会となりました。また、比較する際には、常に同じ条件である「Apple to Apple」を心がけることが重要であると理解できました。 継続率向上の秘訣は? 分析の目的を明確に定めた上でデータを取り扱い、最終的には意思決定に結びつけることが目標です。特に、サービスの継続率向上に向け、何があればサービスが続けやすいか、または辞めてしまうかという点から、顧客ニーズをより深く分析していきたいと考えています。 資料の真意は何? これまで、分析担当者が作成した資料をそのまま受け取るだけでしたが、今後は「何の目的で、どの要素を比較しているのか」を意識して資料を読み解くよう努めます。さらに、顧客のサービス継続率や利用・活用率といった数値を日々確認し、昨年比の大まかな変動だけでなく、そこから導き出せる具体的な示唆についても考察を深めていくつもりです。

クリティカルシンキング入門

自分の意見を効果的に伝える方法学びました

日本語の構造を意識するには? 日本語を正しく使う意識を持っていなかったため、これまで主述や枠組みを意識していませんでした。しかし、今回の教材を通じて、日本語の構造を意識することが重要だと感じました。 サボりそうな時の効果的な対策は? 特に、「サボりそうになったら相手のことを考える」というアドバイスは、強く心に響きました。仕事を進める上で、相手の理解を期待する部分もありますが、そのバランスを取ることが難しいと感じます。 意思決定をどう示すべきか? また、自分の意思決定をメンバーに示す際に、根拠を持って説明することで効果的に伝えられると思いました。同様に、上位レイヤーに意思決定を求める際にも、ピラミッドストラクチャーを用いることで抜け漏れを防げると考えます。 ロジカルな説明で承認を得るには? 今後、意思決定の場で論理的に説明し、承認やチームメイトの同意を得ることに挑戦してみようと思います。また、チームメンバーが作成する文章についても、今回学んだことを基に、目的達成のための根拠付けができているかどうかを確認し、正しい文章を書くように指導してみるつもりです。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。
AIコーチング導線バナー

「目的 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right