データ・アナリティクス入門

データ分析の基本を押さえる重要性

データ分析の本質とは何か? データ分析は「比較すること」が本質であり、常に「Apple to Apple」と適切なもの同士を比べる重要性を学びました。これを達成するためには、実際の分析に移る前に、分析の目的を明確にし、仮説を立てることが大切であると感じました。 仮説の質をどう改善する? データ分析の前提整理や仮説を立てることには既に意識を持ちつつありますが、仮説の質にはまだ改善の余地があると考えています。データ分析を行った結果、自身の仮説が間違っていることに気づき、仮説を立て直すことが多々あります。経験を重ねることで一定の改善は見られるかもしれませんが、体系的に仮説を立てる方法を学びたいと思っています。 効果的な振り返り方法は? 振り返りをきちんと行い、適切な比較対象が選ばれていたのか、仮説がしっかり立てられていたのか、データ分析の目的が明確に言語化されていたのかを確認することが重要です。脳内でチェックリストを作り、それを基に実践し、反復練習を積むことが必要であると感じています。

クリティカルシンキング入門

イシュー設定でチームの士気を高める方法

イシューはなぜ重要? イシューを立てることの重要性は、最も重要な問いであるイシューが時折脱線することがあるため、ときどき立ち戻って議論する必要があるという点にあります。イシューを周りの人と共有することで士気を保てるため、イシューの確定は非常に重要なプロセスとなり、その部分を丁寧に考えることが重要です。 イシューとリサーチクエスチョンの関係は? イシューを明確にすることは、リサーチクエスチョンの設定と似ています。疑問文などを使って具体的に絞り込んでいくことは非常に役立ちます。さらに、周りの人と意識を共有するためにピラミッドストラクチャーを使うことで、内容を可視化しながら説明する際にも役立ちます。 チームでのイシュー共有方法は? 自分一人だけではなく、チーム全体で目的やプロセス、考え方、アプローチの方法を共有するために、イシュー設定やピラミッドストラクチャー、さらにはそれらを包含するクリティカルシンキングをさまざまな局面で認識し、思い出し、活用できるようにしておきたいと思いました。

リーダーシップ・キャリアビジョン入門

リーダーとフォロワーの共演術

リーダーの本質は? リーダーシップは、相対的な概念であるという新たな発見がありました。周囲のメンバーやその都度の状況を踏まえ、目指すべき目的によって、リーダーシップを発揮して行動する場面と、敢えてフォロワーとして振る舞うべき場面が存在するのではないかと感じました。 信頼構築はどう進む? 特に、従来の方法が踏襲される場面が多い組織内で変化に挑戦する際には、目的や意義、背景、そしてチャレンジの先に何があるのかを十分に説明し、メンバーに納得してもらうことが重要です。そのためには、まず日々のコミュニケーションを通じて信頼関係を築くことが必要であり、相手の経験や能力、スキルだけでなく、価値観を理解するための雑談も欠かせません。 多様なリーダー像は? また、「リーダー」という響きからはどうしても一方的に「個が強い」人のイメージを抱きがちですが、必ずしもそのような特徴だけがリーダーの資質ではないと考えています。今後、さまざまなタイプのリーダーシップについて議論を深めてみたいと思います。

クリティカルシンキング入門

小さな問いから生まれる大発見

問いの本質は何だろう? はじめに、「問い」とは何かを確認することが重要です。求められる答えの背景には、表面には現れない前提が存在するため、十分な擦り合わせがなければ正しい解答にたどり着くことは難しいです。主張を固める際は、その要素を分解し、論理的な根拠で埋めていく方法が求められます。 目的意識はどう伝える? 次に、データの加工や各種フレームワークを用いて主張を説明する際は、常に目的を意識する必要があります。たとえば、店舗の取り組みを従業員に周知し実行してもらう場合、目的・目標、そして根拠を明確に伝えることが重要です。課題表の作成も、この順番で進めると効果的です。 研修の根拠は何? さらに、新入社員の教育担当も行っており、その経験が研修方法にも生かされています。下準備が多く必要ではありますが、経験則や感覚に頼った研修では新入社員の再現性が低くなるのではないかと懸念していました。そこで、マニュアルに記載された各行動の根拠を分解し、根本的な理由から丁寧に説明することに努めています。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

リーダーシップ・キャリアビジョン入門

夢と目的で拓くリーダー像

本当のリーダーって何? これまで、特定の人物のリーダー像を描いた書籍などから理想のリーダー像を想像し、方法論として捉えていました。しかし実際には、成功しているリーダーはまず目的を明示し、その目標に向かって関係者全体を最適にまとめ上げていることに気付かされました。方法論だけでなく、マインドセット的要素が非常に重要であると実感しています。 部下の夢はどう伝える? 今後は、国内の部下育成と4月以降の海外での部下育成に、この考え方を実践的に投入していこうと思います。現状のポジションでは、個々の方法論を細かく指導するには限界があるため、大きな方向性―あるべき姿や夢―を伝える形で、目的そのものが推進力となるようにスタイルを変えていくつもりです。 次の一歩はどう実行? 具体的には、国内では来週行われる部会や次期フィードバック面談の場で、海外では4月中旬の赴任先での所信表明演説において、自分が思い描くあるべき姿や実現したい事(夢)を、自分の言葉で明確に示していく予定です。

データ・アナリティクス入門

小さな一歩から見える大きな未来

目的と対象は? データ分析を行う際は、まず対象を明確にし、何を比較するのか、どのような目的で分析を進めるのかをはっきりさせることが大切です。やみくもに作業を進めるのではなく、解決すべき問題を洗い出し、最終的にどのようなアウトプットを目指すのかを事前にイメージしておく必要があります。 計画の進め方は? 初めは大まかな分析から始め、そこから徐々に細部にわたる分析へと進めていくと、全体像を捉えながらも、必要な部分に着眼できるため効果的です。データの収集や加工の前に、分析のロードマップを描いて進めると、全体の流れが整理され、分析結果の精度向上につながります。 他部署での連携は? 他部署と共同でデータ分析を実施する場合は、問題点やアウトプットのイメージについて十分なコミュニケーションを取り、上流工程での認識合わせを中心に進めることが重要です。また、学んだ各種のフレームワークやグラフの表現方法を意識的に活用することで、知識の定着や成果の説得力を高める努力をしています。

マーケティング入門

売上アップのカギは「顧客目線」にあり!

事例から学ぶ 今回の事例から、同じ商品でもどのように魅せて売るかが売上を伸ばす上で重要であることを学びました。顧客目線に立つことは初めのうちはできているものの、次第に競合を意識しすぎて当初の目的とずれてしまうことがあると感じました。特にネーミングの重要性を改めて認識しました。 顧客目線はなぜ重要? また、顧客の立場に立って考えることは、新規事業においても非常に重要だと思います。大きな事業になりがちですが、ターゲティングやポジショニングを活用し、客層やニーズを絞ってから考える習慣をつける必要性を感じました。さらに、自分が顧客だった場合、今進めている事業が本当に必要なものかどうかを再検討する必要があるとも感じました。 なぜ商品は売れない? 例えばスーパーなどに行った際、売れていない商品がなぜ売れないのか、どうすれば売れるようになるのかを自分なりに考えてみます。また、気になる新商品のPR方法やCMが何を伝えようとしているのかも考察します。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

「目的 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right