データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

クリティカルシンキング入門

伝わる資料作りの秘訣

グラフや色の選び方は? 資料作成において、グラフの使い方やフォント、色の選定といった点に気を配ることで、伝えたい内容がよりわかりやすくなると学びました。何を伝えるのかを明確に整理し、その内容に適したグラフを用いることが大切だと実感しました。 文章工夫はどうする? また、文章についても読者にしっかり伝えるための様々な工夫が存在することを学び、今後の表現方法の参考にしたいと感じています。 営業資料の作り方は? 今回学んだグラフの作り方を活かして、営業会議用の資料を作成する予定です。事業ごとの売上推移や売上構成比など、過去から現在までの変化を把握し、注力すべき事業や見直しが必要な事業を視覚的に示せると考えています。 情報収集のポイントは? さらに、伝えたい状況や状態をグラフに反映させるために、必要な情報が十分に集められているかどうかを確認することが重要です。適切な情報がなければ正しい現状分析ができないため、情報収集の方法や、集めるべきデータの有無についても見直していきたいと思います。

データ・アナリティクス入門

プロセス見直しで未来を切り拓く

どうやって原因究明? 原因を特定するためには、分析対象を複数のプロセスに分解し、各段階で明確な問題箇所を探ることが重要です。人の行動に即したプロセス設定を行うと、問題の箇所が特定された後の改善策の検討もスムーズに進むことが分かりました。 なぜ事前に決定すべき? また、What、Where、Why、Howといった基本的なステップと同様に、プロセスの設定も仮説検証に入る前に決め、その内容を関係者間でしっかりとすり合わせる必要があります。たとえば観光客の減少の原因を探る場合、ユーザーがどのように情報を収集し観光地を選んでいるかというプロセスと、現状で手に入っているデータがどの段階で取得されたものかを突き合わせることが求められます。 データ整理の要点は? さらに現状分析においては、最初に幅広いデータを集めることが大切です。各データが持つ性質や項目、定義について周知するとともに、ファネルに沿ってデータの分類や分析を進め、必要なデータの補完を行うといった段階的な準備が成功の鍵となります。

アカウンティング入門

企業を深く知る!新視点の財務分析

なぜ財務表を学ぶの? ライブ授業では、ある企業の事例を通して、財務諸表を詳しく見ることの重要性を学びました。これにより、損益計算書や貸借対照表の理解を深めることができ、この1か月以上の学びを振り返り、今後の学習方法についても考えることができました。 どうやって企業理解? まず、顧客企業の財務分析においては、企業のホームページや採用情報、関連出版物、さらにはヒアリングを通じてそのビジネスモデルをしっかり理解していきたいと思います。これによって、単なるテンプレートに基づく定量分析ではなく、具体的に何を分析したかが明確になるような分析が可能になると考えています。 仮説検証の流れは? 次回定量分析を行う際には、まずデータを収集するのではなく、企業のホームページや採用ページ、出版物をもとに、企業の人員構造や財務状況について仮説を立ててみます。その後、この仮説を検証するために定量分析を実施し、特に仮説と異なる結果が出た場合には、顧客への報告時に質問や議論を重ね、理解を深めていく予定です。

クリティカルシンキング入門

ブロック図で見える本当の自分

無意識な思考整理は? 自分でも無意識に持っている思考パターンがあることに気づきました。常に、自分の考えが組織の目的からずれていないか、正しい方向へ向かっているかを問い直す必要性を学びました。 情報整理の基本は? そのための基本として、ブロック図のような形式で思考を階層化し、抜け漏れなく情報を整理する方法が大切だと感じています。客観性を鍛えることで、自分固有の考え方の癖から離れることができ、日々のアウトプットや業務においても実践できると実感しました。 多様な視点を取り入れる? 部下や上司へ提案する際は、上記の方法で整理した考えをもとに説明するようにしています。提示前の情報収集段階では、自分の視点だけに囚われず、反対意見を持つ人々を含めた幅広い視点から情報を集めることが大切です。そして、その集まった情報を階層ごとに客観的に分類しながら考えることが理想的です。 適切な伝達方法は? 目的が明確になったら、適切なレベルの情報を用いて分かりやすく部下や上司に伝えるよう努めています。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

ABテストで成果を生むコツと課題

問題の原因をどう探る? 問題の原因を探るためには、まずプロセスを整理し、どの部分に課題があるのかを特定することが重要です。複数の仮説を立てて、それぞれの解決策を丁寧に検討する必要があります。ABテストは、少ない工数で低リスクに検証ができるため、おすすめの方法です。 ABテストの利点と課題は? 今回のテーマは自分の日常業務に近かったため、より理解が深まりました。ABテストについては、各媒体がAIで最適化するケースが増えており、実施が容易になっている一方で、「なぜこちらの方が成績が良いのか?」といった点が理解しにくくなり、次回に活かすのが難しいと感じます。 重要な視点をどのように意識する? 重要なのは、What、Where、Why、Howの視点を意識することです。ついついHowの検討に集中してしまいがちですが、プロセスを分解し、仮説を立てる手順を怠らないようにしたいです。また、仮説を立てるためには内部・外部の両面からの知識が必要ですので、情報収集の重要性も再認識しました。

クリティカルシンキング入門

課題解決の難しさと新たな視点の発見

振り返りの重要性とは? 総合演習を通じて、これまで学んだことをバランスよく振り返ることができました。しかし、課題の本質を見極めて解決に導くのがいかに難しいかを改めて痛感しました。仕組みを理解するだけでなく、適切な判断を行うためには十分な情報収集の努力も不可欠だと感じました。 理論活用の実践法は? 自身の業務においては、まずは自分自身の考え方を変えていくことが重要です。今回学んだ理論や思考の偏りを理解し、それを活用します。そして、周囲のメンバーを解決に導いたり、論理的に説得する際には、話の組み立てや資料の構成などに学んだことを活かしていきたいと思います。 ロジカルに考える習慣とは? 物事を考える際には、一度立ち止まって冷静に考える習慣を持ちます。また、周囲のメンバーから相談を受ける場面では、論理的に考えて解決に導くことを心掛けます。その際には、話し方や報告、説得の場面でロジカルに話をできるよう、定着するまでは時間をかけてでも話の組み立てを行うようにしたいと思います。

データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

マーケティング入門

ネーミングで成功するビジネス術

売れた秘訣は何? 顧客のニーズや企業の強みについて考えるために、ある企業のコロナ禍で売れた商品事例を深掘りしました。特にパジャマスーツのヒット理由の一つとして、ネーミングの重要性を学びました。このことから、興味を引く商品名がいかに大切かを再認識しました。 本音はどう見抜く? また、顧客の真のニーズを知ることの重要性を感じ、今後はそれを意識して仕事に取り組んでみようと考えています。具体的には、クライアントに対して自社商品や業界に関するアンケート調査を実施しようと思います。調査の内容としては、自社商品を選んでもらっている理由や、他社商品から切り替える前の評価、さらに望ましいサービス、困っている点などをヒアリングします。 情報収集はどう進む? これらのヒアリング項目をよく考えたうえで、資料に落とし込み、打ち合わせを通じて、またはメールを通して情報を収集する予定です。このプロセスを通じて、顧客のニーズをより深く理解し、ビジネスに役立てたいと思っています。

データ・アナリティクス入門

問いと仮説が導く学びの軌跡

仮説思考の始まりは? 常に目的意識を持ち、問いを立てることから仮説思考は始まります。まずは、何を知りたいのか、どんな結果を期待するのかを明確にしてから仮説を立て、必要なデータを集めて分析を行います。こうしたプロセスが、分析作業において無駄を省き、効率よく目的に近づくための鍵となります。 グラフ作成のポイントは? また、グラフなどの可視化資料を作成する際も、まず仮説や伝えたいメッセージ、そして対象となる相手を意識することが大切です。誰に何を伝えたいのかを明確にして、伝わりやすい構成でグラフを作ることで、情報の意味が正しく伝わります。 新たな発見はどう? さらに、問いを発見する一助として、最新の研究結果や知見に触れることが有効です。たとえば、研究論文を読む機会を増やしたり、仲間から新たな情報を得るなど、日常的に情報収集に努めることが求められます。説明資料を作成する際も、自分が何を伝えたいのかを整理し、論理的かつ簡潔な表現でまとめることが重要です。

マーケティング入門

魅力が一目で伝わるコツ

どうして深掘りが必要? 顧客がある程度の満足度に達すると、自分自身でも本来のニーズに気づかなくなり、直接のヒアリングだけでニーズを把握するのは難しくなります。そのため、単なる質問だけでなく、訪問や街頭での行動を観察し、より深くニーズを探ることが重要です。また、商品を売り込む際には、サービス内容や機能がひと目で伝わるような印象的なネーミングが、顧客の興味を引く鍵となります。 上層部へ伝える秘訣は? 一方、提案を受ける側は、自身のニーズを言語化できると知らずにいるケースがあります。投資案件を上層部に提案し、承認を得るためには、その役員がこれまでどのような取り組みを行ってきたか、どの部分に現在力を入れているか、普段の言動など、細かな情報を収集することが必要だと感じました。また、案件を説明する際に長々と話してしまうのではなく、まずはその案件の魅力が直感的に理解できるテーマを最初に提示することで、上層部により効果的に伝える方法を今後試してみたいと思います。
AIコーチング導線バナー

「情報 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right