データ・アナリティクス入門

5W1Hで開く業務改善の扉

数字はどう生かす? 問題を把握する際には、勘や経験だけでなく、定量的な数字と各工程における「いつ」「どの業務が」「なぜ」「どのように」という観点でステップごとに整理することが大切だと実感しました。この考え方により、現状を正確に把握し、その情報を基に仮説を立て検証することで、具体的な解決策を見出すことが可能になります。 現状をどう読む? 業務改善においては、まず現状を正確に捉えることが必須です。各作業工程を定量的に整理し、5W1Hのフレームワークで状況分析を行います。ただし、数字だけでは捉えられない部分もあるため、現場へのヒアリングを通じて、数値との整合性を確認することが求められます。 仮説はどう進む? また、現状の正確な把握を前提に、仮説を立てて検証を重ねるプロセスが重要です。仮説策定にあたっては、現場担当者の感覚も加味し、実際の状況に即した検証を行うことで、机上の空論に終わらないよう努めています。さらに、最近学んだマーケティングの考え方を活かし、実際の行動パターンや離脱ポイントに注目しながら改善策を検討していきたいと考えています。

アカウンティング入門

実例で感じる財務の魅力

ライブ配信の魅力は何? ライブ配信を通じた実例を交えたワークショップに参加し、これまで学んできたP/LとB/Sの知識がより深まったと実感しました。特に、取り上げられた企業の事例はイメージしやすく、各数値に対して仮説を立てながら検証するアプローチの重要性を再認識することができ、今後のビジネスプラン作成にも役立てたいと感じました。 真の課題はどこに? このワークショップで学んだ手法を活かして、改めて自社の財務3表を詳細に分析し、真の課題がどこにあるのかを明らかにしたいと思います。また、直近3年間の財務状況を振り返ることで、これまでどのような施策や対応が取られてきたのかを確認し、その知見を今後の改善に繋げる所存です。 予算編成で何が見える? さらに、本講座で紹介された参考図書の内容や動画の視聴を通じ、アカウンティングスキルを一層磨いていく予定です。現在は2025年度の予算編成が迫っていることもあり、足元の業績を丹念に分析し、予算の内容についても十分に考察することで、今後の会社の確かな成長を実感できるよう努めていきます。

戦略思考入門

選択と集中で業務を効率化する方法

本当に捨てる意味は? 「捨てる」という行為は一見すると簡単に思えますが、意外と難しいと実感しました。ただ単に捨てるのではなく、目指すべきゴールを明確にすることで、必要なものと不要なものを選択する必要があると感じました。その際、数値的な根拠を示すことで、選択がより明確になると思います。限られた資源や時間の中で最速で目標に到達するには、「捨てる」ことが非常に重要だと感じました。 業務無駄は疑うべき? 業務効率化の観点でも、「捨てる」選択は必要です。たとえば、「以前からこうだったから」といった理由で行われている業務は、実際になぜ行っているのかわからない場合があります。このような業務には無駄があるため、「捨てる」ことを提案していくべきです。 業務改善の洗い出しは? 【業務効率化のステップ】 まず、自分の業務を洗い出してみましょう。その中で、不要な業務や惰性で行っている業務がないかを考えてみてください。不要だと感じた業務が本当に効果がないのかを検証し、その後、数値的根拠を示すことができれば、上司や同僚に提案を行うと良いでしょう。

データ・アナリティクス入門

実務で使える統計の知恵

代表値をどう捉える? 代表値として頭に浮かんだのは平均値と中央値でしたが、実社会では加重平均などさまざまな平均値が活用されている点にあらためて気づき、体系的に学ぶ重要性を感じました。また、標準偏差がばらつきを示すという理解はあったものの、計算方法や2SDルールについては改めて理解を深めることができました。 要因分析をどう活かす? 障害分析の要因分析においては、単に平均値だけを利用するのではなく、取得できる数値情報それぞれの意味を理解した上で、加重平均や幾何平均など適切な手法を用いる必要があると感じました。一方で、分散については現在の業務で具体的にどの局面で利用できるかはまだ明確ではありませんが、基本的な考え方として頭の片隅に置いておくべきだと感じました。 今数値はどう使う? まずは、現在扱っているさまざまな数値を見直し、現状の利用方法が適切かどうかを確認する必要があると考えました。また、まだ導入できていない分散についても、新たに算出することで別の視点が得られる可能性があるため、再度検証する必要があると感じています。

データ・アナリティクス入門

数値分析で見える改善のカギ

売上低下の原因は? 売上低下の理由を分析する際、問題箇所の特定、売上構造の分解、そして仮説設定と検証方法をリアルタイムで実践しました。特に、売上単価については平均値だけでなく中央値も用いることで、新たな切り口から問題点を把握できることを再確認しました。また、グラフの見せ方が伝える力を持つことについても改めて学び、理解を深めるきっかけとなりました。 予算未達の理由は? 同様に、予算が未達成となっている要因を特定するため、予算構成項目を分解し、前年や前月との比較を通じて落ち込みが生じている点や、伸ばすことが可能な点を明らかにしました。さらに、予算未達成が「予算設定自体の高さ」なのか「実績の低下」に起因しているのかを明確にすることも試みました。 社内データの解析は? 最後に、社内データを活用して予算の各項目ごとに集計を行い、予算比、前年比、前月比などの比較を通じて問題箇所の把握と予算の位置づけを行いました。問題箇所が明らかになった後は、ギャップを3Cの視点から分析し、具体的な仮説を立てた上で検証を進めました。

データ・アナリティクス入門

売上低下の真因を明らかにする分析術

総復習で得た新たな視点とは? 今までの講義の総復習だったので、各パーツで学んだ内容を一連の流れとして把握できました。仮説、網羅的思考、目的の設定、見せ方、分解など、分析の知識と新たな思考法を学ぶことができました。また、結果をイメージした分析の重要性も体感することができました。 なぜ売上が思わしくないのか? 現在、売上が思わしくないため、きちんと目的を持った分析、原因の追究、仮説・検証の繰り返し、そして網羅的な思考を意識して業務に取り組みたいと考えています。さらに、定性的な言葉と定量的なデータを組み合わせることで、説得力のある提案ができるようにしたいです。 今後の施策にどう活かす? 売上が上がらなかった理由については、いくつかの仮説があります。まずはこれを基準に分析を行い、それに加えて網羅的な仮説も追加して多角的な分析と提案を実施していきます。原因の追究を行い、今後の施策に活かすことが重要です。また、数値がなくても、今回学んだ思考は応用可能な部分があると思うので、売上の改善に役立てていきたいと考えています。

データ・アナリティクス入門

仮説と会議で拓く未来戦略

テスト実施に何が大事? ABテストについては、これまで営業部門で実施した結果を共有した経験がありますが、今回主体的に実施する際の留意点を改めて学びました。特に、テストを行う際には目的と仮説を明確にし、しっかりとした検証項目を設定することが重要だと感じました。今後の新規事業展開において、これらのポイントを意識して進めていきたいと思います。 評価の選定はどうする? また、複数の解決策を効果と費用のXY軸で評価した経験から、評価基準をさらに1~2項目増やし、数値化することで、総合評価に基づいた優先実施策の選定に取り組んでみたいと考えています。評価基準を選定する際にブレインストーミングを交えた議論を行う過程も楽しみです。 会議計画の進め方は? さらに、月次の経営会議において、各営業部門が問題抽出、原因究明、解決策の洗い出し、実施試作の選定、アクションプランの作成、進捗共有という一連のプロセスを推進する会議計画を策定することを提案し、年度内に効果検証を実施する案についても、社内で相談を進めていきたいと考えています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

クリティカルシンキング入門

仮説検証で視野を広げる思考法

切り口で見える? 複数のデータから一つの仮説を立てる際、切り口を変えると見え方が異なることがあります。これは、文章や言葉だけでなく、数字を分析する際にも思考が偏ることがあり得ると感じさせられました。今見えている情報に基づいて判断することに疑問を持つきっかけとなったと思います。 分析で何が見える? 事務リスク発生の原因分析においては、数値を扱う際の前処理やカテゴライズの過程で切り口を変えることが有効だと感じました。残業時間の増加や処理目標未達成の原因を分析する際にも、同様の手法で切り口を変えてカテゴライズすることで、見過ごされている問題を発見できる可能性があると思いました。 区切ると何が見える? 原因分析時のカテゴライズでは、単にキリのいい数字で区切るのではなく、仮説を立てた上で細かく区切ることが重要です。また、一度作業を終えたらそれで結論とせず、他に考えられる要素がないか一度立ち止まることも大切です。全体の定義を明確にし、漏れや重複がないように意識して区切ることを心がけるべきです。

クリティカルシンキング入門

仮説を立てて未来を見通す力

なぜ図やグラフを活用する? 数値だけで判断するのではなく、図やグラフを用いて分析することで、全体を把握しやすくなることを再確認しました。個々の切り口で分析を行っても、複合的なアプローチをすることで新たな要因が見えてくる可能性があり、その難しさも実感しました。 仮説検証の重要性とは? ITを利用・提供・提案する企業として、BIツールを使って定型的なグラフでドリルダウンし、詳細に分析することはよくあります。しかし、今回の学習を通じて、定型的な分析にとどまらず、様々な視点で仮説を立てて検証することで、表面には見えない部分を捉える重要性を考えるきっかけになりました。 本質を追求するためには? 今後も、分析ツールを用いた提案は続くと思われますが、単に目に見える形にするだけでなく、本質的な原因を追求するために、自分自身や顧客が仮説を検証しやすい環境やツールの整備が求められると感じています。そのためには、MECEなどを意識してデータを整理整頓することが重要だと考えています。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

「数値 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right