アカウンティング入門

お金で読み解く自社の知られざる価値

お金の視点、どう捉える? 改めて会社内のさまざまな活動を、お金の動きという視点で捉えるという考え方が新鮮で、とても興味深く感じました。社内のデータやその基になる活動を詳しく調べる中で、実は自分たちの会社についてあまり知られていない部分が多いことに気付かされました。今後は、何事においてもお金の流れという側面を意識して理解を深める習慣をつけたいと思います。 事業部比較はなぜ? 現在、複数の事業を展開する自社において、事業部別の事業構造や実態を比較把握するプロジェクトに取り組んでいます。このプロジェクトの内容は、改めて自社の活動をお金の動きの観点から理解するという視点と直結していると感じました。特に、私たちの企業は設備投資をあまり必要としない労働集約型であり、人材が最も重要な資産であることから、その活動を金銭面でも検証してみたいと考えています。 活動はどう検証する? まずは、どのような活動が行われているのかを明確に列挙する必要があります。続いて、それらを体系的に整理し、活動の目的や実態、課題などを明らかにした上で、金銭的な要素も加えていくつもりです。人的資本経営という視点では、誰が誰に対してどのような目的でどんな活動をしているのかをすべて定量化するのは難しいものの、可能な限り数値で表せるよう努めていきたいと思います。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

データ・アナリティクス入門

論理で拓く未来への一歩

現在の状況はどう評価? 問題解決には、まず最初に現在の状況と理想とのギャップ、つまり「あるべき姿」と「現状」の差を明確にすることが必要です。このギャップは、分析の際に数値化することで、問題の規模や深刻度が具体的に把握できます。 問題発生の場所は? 次に、問題が具体的にどこで発生しているのかを検証します。問題を細かい要素に分け、見なくてもよい部分を除外することで、焦点を絞りやすくなります。 原因は何だろう? その後、なぜ問題が発生しているのか、その根本原因を徹底的に分析します。そして、最後のステップとして、どのように解決策を実行していくかを具体的に考えます。ここでは、ロジックツリーやMECEの考え方を活用することで、多角的な視点から検討し、説得力のある解決策をまとめることができます。 解決策はどこから? この問題解決の手法は、売上の予算と実績の差異を説明し、対策を検討する際に非常に有効です。問題解決のステップを意識することで、効率よく課題に取り組むことができると感じています。また、これまであまり活用してこなかったロジックツリーやMECEの手法も、論理的な考え方を鍛えるために必要であり、簡単な分析にも応用することで、次第に使いこなせるようになりたいと思います。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

アカウンティング入門

数字と戦略の不思議な関係

利益創出の秘訣は? P/Lは企業がどのようにして利益を生み出しているかを示すもので、売上総利益、営業利益、経常利益、当期純利益の前年比や各項目の構成比を通じ、企業が提供する価値がどのように反映されているかを読み取ることができます。当期純利益はB/S上で利益剰余金として純資産に加算され、両者は連動しています。 B/Sの仕組みは? 一方、B/S(バランスシート)は資産、負債、純資産の三要素がバランスを保っており、特に下部に位置する項目は固定的なお金として扱われます。同じ業態であっても、企業が本質的に提供する価値が異なれば、P/LもB/Sもそれぞれ特有の構成となります。 決算資料は何を見る? 具体的な決算資料、例えば第2四半期の資料をしっかりと読み込み、企業が今後目指す数値や成長戦略を確認することが重要です。また、同業他社とのP/LやB/Sの比較を行い、違いを明確にした上で、意見交換会などの場でそれぞれの工夫点をヒアリングすると良いでしょう。 連結決算の検証は? さらに、連結決算やIFRSの知識を深めること、また、数年後の目標の妥当性を具体的に検証し、どの項目でどの程度の増減が求められるか把握することが、株主をはじめとする社外の期待に応えるためには不可欠です。

アカウンティング入門

数字×信念の経営ストーリー

本質はどう捉える? ビジネスの本質を理解する上で、コアバリューとPL(損益計算書)を照らし合わせることの重要性を再認識しました。特に、事例発表で紹介されたある方の計画を見た際、カフェの収支が合わなくなるのではと懸念しました。しかし、1年後に示されたPLには、しっかりと利益が確保されており、投資対効果が鍵となることを改めて感じました。 予算調整の極意は? また、私自身の業務で複数のWEBサービスの事業管理に携わる中で、下期の予算編成に際し、各サービスのコアバリューとPLをしっかりと照合し、単なるコスト削減に偏らない運用の必要性を痛感しました。具体的には、まず各サービスオーナーとの協議の中で、コアバリューとPLの関係を十分に整理し、その上で各費目の構成比や投資対効果、予算比、前年比などを基に詳細な議論を進めると良いと考えています。この順序を守ることで、思考が単に数値に偏らず、全体像を捉えた経営判断につながると感じました。 収支把握の秘訣は? さらに、カフェの事例については、客単価や客数、原価、販管費の各項目が明確に示されれば、収支の具体的なイメージがより一層浮かびやすくなったのではないかとも思います。事業の継続性についても、改めて検証する必要性があると感じました。
AIコーチング導線バナー

「数値 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right