データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

データ・アナリティクス入門

分解で納得!問題解決の実践

課題の本質を探る? 問題解決には明確な手順が必要です。まず、直面した課題を正確に言語化し、現状とのギャップを明らかにすることが求められます。そのため、分析を始める前に、課題とギャップの埋め方についてしっかりとすり合わせ、合意を得ることが重要となります。 合意のポイントは? 合意を形成するためには、問題を漏れなくダブりなく分解し、論理的かつ視覚的に納得感が得られる形で提示する必要があります。たとえば、「劇場の売上の減少」という課題認識のもと、大枠では単価と客数に分解できますが、そこからさらにMECEな形で掘り下げ、時系列比較の中で最も影響が大きい部分を特定することが効果的です。 収束はどう図る? また、予実比較の検証のように議論が発散しやすい場合でも、一定の手順に従えば納得感のあるロジックで改善箇所に合意が得やすくなります。具体的には、直近1年分の売上データを活用し、MECEな形で分解作業を行うことで、現状の売上改善余地がある領域を根拠をもって説明できるようになります。 改善策はどう決定? 最終的に、関係者の合意を得た上で、特定した改善領域に対するアクションプランを立案し、提案することが求められます。

データ・アナリティクス入門

論理と実践で描く解決ストーリー

数値に隠れた真実は? 本単科で学んだ内容を振り返り、まず、データ分析は単なる数値の羅列ではなく、比較対象を明確にした上で、数値に裏付けられた論理的な問題解決の道筋を描くことが大切であると再認識しました。 問題解決の流れは? また、問題解決にあたっては、思いつきの分析ではなく、問題解決の4ステップを明確にし、解決までのストーリーをしっかりと立てて実行する必要性を学びました。健康経営推進でのKGIやKPIの設定、戦略の見直し、効果的な施策の検討、さらには働きやすさや働きがいの醸成に向けた取り組みとして、男性の育休取得率と女性活躍の相関関係の検証、介護と仕事の両立支援に関する現状把握と課題の抽出、効果検証といった事例を通して、その具体的なアプローチ方法が示されました。 効果的なスキル向上は? 加えて、Excelを用いた関数活用やグラフ作成のスキル向上、可視化資料を活かした説得力のあるプレゼンテーションの訓練が、実践的な分析や提案活動に直結する点も印象的でした。自分が出した解決案を俯瞰的に確認し、他者の意見を取り入れてブラッシュアップすることで、より実効性のある提案が実現できると感じました。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

データ・アナリティクス入門

分析の核心に迫る!比較の極意とは?

比較の重要性とは? 分析の本質は比較にあります。比較を行う際には、比較対象の性質が揃っているかに注意することが重要です。例えば、長野県のりんごの生産量と青森県のりんごの生産量の比較は適切ですが、長野県のりんごの生産量と静岡県のお茶の生産量の比較は不適切です。上述の例は分かりやすく示しましたが、ビジネスにおいては見た目上は比較されていても、実際には比較対象が揃っていない場合がありますので注意が必要です。そのため、分析においては、どのようなデータを集めるのか、何と何を比較するのかという前段階が特に重要だと考えます。 顧客満足度データの活用法は? 普段、弊社のサービスに対する顧客満足度の分析を行っていますが、データは十分にあるものの、うまく活用できていない部分もありました。これまで適切な比較ができていたのかを振り返りたいと思っています。 分析チームの新たな取り組みは? 明日は分析チームでの会議があるため、今回学んだ視点「分析の本質は比較であり、比較対象を揃えること」をメンバーに共有します。次の分析においては、比較対象についてメンバー間で共通の認識を持ち、適切なアウトプットに近づけるよう努めます。

マーケティング入門

顧客視点の深層ニーズ探求術

顧客の真意は何? 「顧客からの意見をそのまま商品化しても、それが必ずしも成功するわけではない」との考え方に深く共感しました。商品化の難しさや顧客目線での本当のインサイトをしっかりキャッチすることの重要性を感じました。顧客の声をいかに解釈し、表面的な意見ではなく、深いニーズを探ることが大切です。 なぜ競合と比べる? また、顧客目線で考えているつもりが、いつの間にか競合商品と比較してしまうこともあると気づきました。この点についても、うなずきながら学習を進められました。 差別化の鍵は何? 商品差別化が難しい状況で、デプスインタビューなどから得たニーズやインサイトを的確に読み取ることの重要性を感じています。その際、顧客のシーンやネーミングも検討の対象として考える必要があります。 具体策は何? 具体的なアクションプランとしては、デプスインタビューでの知見の洗い出しや顧客の行動を考慮した想像力の働かせ方、さらにイノベーション普及の要件をどう当てはめていくかを探求しています。他社のD2Cブランドを研究し、キャッチコピーの検討に役立つパーセプションフローを考えることも進めています。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

アカウンティング入門

問いが導く業界と成長へのヒント

業界理解は十分ですか? 一見理解しやすいと思われがちな業界であっても、その特性を十分に理解しなければ、売上や費用の数字を正しく読み解くことは難しいと実感しました。各業界の事業特性を踏まえることが、財務諸表の分析能力を向上させる鍵であると感じています。 問いで成長できるでしょうか? また、学習方法として「問いを受け、考える瞬間こそが成長の起点である」という点に気づかされ、今後の学びに大きな影響を与えていると感じました。 比較分析の基本は何でしょう? 基礎面では、自身の業界や関連業種間での企業比較分析を日々の業務に活かすことで、アカウンティングの基本的な活用方法を確立していきたいと思います。 経済全体の見方はできていますか? さらに、ビジネスマンとして様々な業種を対象に、社会経済全体の動向を理解する視点を広げる必要性を強く感じました。そのためには、各業界の事業特性や直面している社会課題を正しく把握することが不可欠です。今後は、継続して学習プログラムを受講することや、新聞などの資材を利用して社会経済全般の知見を深める取り組みを進めていきたいと考えています。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

「比較 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right