データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

データ・アナリティクス入門

新視点!対概念で解く課題の秘密

今回変更する振り返り文章 学びのポイントは何? 今回の学びでは、課題解決のプロセスを段階ごとに整理する方法と、従来のフレームワークにとらわれずに課題の本質を捉える「対概念」という考え方を学びました。先週は3Cや4Pといった分析手法を用いて問題点を洗い出す例に触れていたため、今回の新たな視点は思考の幅を広げる刺激になりました。 対概念の意味は? 「対概念」とは、問題のある箇所とそれ以外の要素を対比しながら考えるアプローチです。たとえば、「ターゲット設定に問題がある」という見方に対し、設定以外に問題が潜んでいる可能性を同時に捉えることで、より柔軟な課題設定が可能になります。 改善案の選び方は? また、今回学んだ内容は、最適な改善案を選ぶために各案をコストやスピード、チーム内の連携といった評価基準で総合的に判断する重要性も再認識させてくれました。具体例として、Webデザインの改修にあたり、内製するか外注するかを検討する場合の評価方法が挙げられ、数ある案から最も有益なものを選ぶプロセスに参考になりました。 A/Bテストの狙いは? さらに、従来の案と新たな案を比較するA/Bテストの手法についても学びました。テスト実施の際は、両案の条件を可能な限り揃え、外部環境の変動にも配慮してランダムにテストを行う点がポイントとされています。 実用性の確認方法は? 自社の業務においては、今回学んだ「対概念」の視点が非常に実用的だと感じています。滞っているシステム改修作業の設計を見直す際、従来のフレームワークに限定されず、柔軟なアプローチで打ち手を検討する一助となると実感しました。

アカウンティング入門

B/Sで読み解く企業ストーリー

B/Sの全体像は? B/Sは企業のお金の流れや注力しているポイント、さらにはビジネスの特徴を把握するための重要なツールです。まずは、資産・負債・資金という3つのパーツの規模やバランスに注目し、全体像を把握することが基本です。 資金活用状況は? 資金の有効活用状況を判断するためには、資産がどの程度増加しているかや、事業拡大のために重点的に投資している部分を確認します。また、流動資産が流動負債を上回っている場合や、固定資産全体を純資産で賄えている場合は、企業の安全性が高いと判断できます。一方、固定資産が純資産でまかなえていなくても、事業拡大を狙い負債を活用している場合もあるため、各項目の内容を注意深く見る必要があります。 減価償却の意味は? また、減価償却の考え方については、耐用年数に応じてB/S上の固定資産が減少し、その分がP/L上で費用として計上される関係が理解できました。 業界特徴の違いは? 事業内容によってB/Sの特徴は異なります。成熟したインフラ産業では固定資産の割合が高く、安定した業界であるがために負債を利用して資金調達を行うことが多いです。一方、比較的新しいクラウド産業では固定資産が少なく、負債を持たない傾向があります。 事業拡大の鍵は? さらに、食品・飲料業界においては、B/Sのどのポイントが事業拡大の鍵となるのかを検討することが求められます。自社で具体的な数値分析を行い、事業の状況を改めて理解することや、工場設備などへの投資に関連する減価償却や耐用年数の違いがB/Sにどのように反映されているかを確認することが重要です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

戦略思考入門

視座を高める!フレームワーク活用術

経緯と意見をどう文章化する? 実践演習では、経緯や意見が文章化されているため、より俯瞰的に考えやすくなったと感じました。リアルな状況ではなかなか難しいことです。 視座を高く保つ重要性 まず、視座を高く持ち、全体的に見て価値が生み出せるかを考えることが重要です。また、他の人の意見を聞き、抜け漏れなく情報を整理すること。そして、情報整理にはどれかのフレームワークを活用することが大切です。この3点は普段意識が薄れてしまうことがあるので、これからは意識的に取り入れ、業務の中で自然に活用できるようにしていきたいと思います。 フレームワークをどう使うべきか? 私の所属するグループでは、「フレームワークを活用しろ」という指示が度々あります。しかし、よくある問題として、前後の情報の繋がりもなく、フォーマットを埋めただけで満足してしまうことがあります。今回の学習で、フレームワークの使用目的や、整理された情報をどう繋げるのかを学んだため、まずは基本の3Cに立ち返って取り組んでいきたいと思います。 不足情報はどう補う? 新規事業領域に携わっている特性上、市場形成が未成熟だったり、自社が初めて参入を検討する領域であったりするため、情報蓄積が不足しています。まずは現在持っている市場環境や競合、見込み顧客へのヒアリング結果を集約し、それを3CとSWOTのフレームワークに当てはめて、不足している分析を整理しようと思います。整理した内容については、メンバーと共有し、過不足を確認した上で、現在の事業計画と比較。根拠の薄い要素や計画に修正が必要な点を洗い出して進めていこうと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

データ・アナリティクス入門

プロセスで紐解く成功の鍵

問題の原因は何か? まず、問題の原因をプロセスごとに分けて考える手法は、表示回数、クリック数、申し込み数の比率を提示することで、単に回数が多いという表面的な仮説だけでなく、表示回数に対してクリック数が多い点や、クリックから申し込みへの転換率の高さなど、各段階ごとに比較が可能となり、疑問点が見つかりやすくなると感じました。 対比で何が分かる? また、ある事象を自社とそれ以外といった対となる概念で見ることで、思考の幅を広げ、仮説が出しやすくなるという視点にも共感しました。この方法は、試行錯誤の中で新たな発見につながり、より効果的な改善策を導く手がかりとなると思います。 ABテストの本質は? さらに、ABテストについては、要素を限定して2つの試作品を比較する手法として、検証の目的を明確にし、1要素ずつ慎重にテストを進める必要があると実感しました。特に、環境要因に左右されないように、同時期に実施する点は非常に重要であると考えます。 遅延原因はどう把握する? また、デザイン制作の遅延要因の分析において、プロセスを分ける方法は大変有用だと感じました。理由を分類することで、自分たちの問題なのか、他の要因にあるのかを切り分けながら対策を進められる点に納得しています。 効果的な手法は何か? 最後に、ABテストの進め方を見直す必要性も実感しました。簡易なオンラインテストで漠然とどちらが良いかを判断するのではなく、検証の目的を絞って段階的に実施することで、デザインの改善点を具体的に確認しながら進める手法に大いに可能性を感じました。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

「比較 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right