データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

マーケティング入門

魅力的な情報伝達への挑戦

魅力を伝える方法とは? 顧客に情報を伝えることは意識していたものの、相手が魅力を感じる伝え方については深く考えられていなかったと感じます。他社との差別化を図るために設けた言葉が、結局顧客の魅力につながらなければ意味がありません。目的を見失わずに仕事をしたいと気付きました。 重要な学びの三つのポイントとは? この講座を受けるにあたり重要だと感じた点としては、以下の3つがあります。まず、素直に取り組むこと。今までの経験から生じるバイアスを持たず、講義や動画、他の参加者の意見を真摯に受け止める。そして、積極性を持つこと。さらに、目標や目的を具体的にイメージして取り組むことが重要です。プログラムが終了する頃にはマーケティングへの興味が増し、仕事に活用したい、他の人にも伝えたいという熱意を持って集中して取り組みたいと思います。 プロモーションでの新しい挑戦は? 仕事においては、新たに認知施策やプロモーションの手段を見直している時期ですので、データから独自のアイディアを出せる状態になりたいと思います。また、マネジメント向けのプレゼンやプロモーションのチャネル選択、方法の検討にもこの知識が活かせると感じています。魅力的に情報を伝えるために、他社や前例にとらわれずに考えることの大切さを再認識しました。さらに、顧客向けのアンケートを通じて、どこまで何が伝わり、魅力を感じてもらえたのかをヒアリングすることも心掛けたいです。 自信を持つためのステップは? まだ具体的なイメージは持てませんが、自信を持って業務に取り組めるようになりたいと思っています。同僚や上司にも納得感があり、有益だと感じてもらえる分析や新施策を展開できるように、マーケティングの考え方に基づいてシンプルに話ができるようになりたいです。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

クリティカルシンキング入門

数字の見方が変わる!グラフの魔法

数字を視覚化するポイント 数字の分解について、私は4つの大きな学びがありました。 第一に、数字を目で見るだけではその差が分かりづらいという点です。グラフにして視覚的に確認することで、数字の差や傾向が見えてきます。また、複数のデータをグラフ化して掛け合わせて見ることにより、それまで見えていなかった部分も知ることができます。 グラフ作成のコツは? 第二に、グラフを作成する際に機械的に5や10で刻んでしまいがちですが、そのグラフの目的に合わせて刻み幅を考えることが重要です。顧客層であれば、学生と社会人を意識した年代で分けるなどの工夫が必要です。 多様な切り口で分析するには? 第三に、数字を様々な切り口で分解することで傾向をより詳しく知ることができます。逆に、細かく分解しないまま分析を行うとミスリードにつながる可能性があります。 MECEの活用法を知る 最後に、MECEを使って漏れなくダブりなく分解することが大切だということです。まず全体を定義してから、目的に合わせた分解方法を考えることが必要です。 さらに、留学プログラムの参加者の分析(地域別、性別、年齢別、分野別など)や助成金の配分、アンケートや提出物の回収の際の分析(期日までに全員回収するのは難しいため、回答期日の分布を分析して効果的なリマインドタイミングを導き出す)にも、今回学んだ数字の分解方法が活用できると感じました。 学びを実践でどう活かす? 今週学んだ内容を改めてノートに書き起こし、職場で確認できるように目に見えるところに置く。実際に数字を分析する機会はなかったが、1つの留学プログラムで複数の切り口を考えて分解し、得られた結果を同僚と共有することで、実践的なスキルアップにつなげることができると思いました。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

データ・アナリティクス入門

仮説で未来を切り拓く!経営戦略の新視点

仮説の整理はどう? 問題解決のプロセスにおいては、「What」「Where」「Why」「How」といった仮説の立て方を4つのステップを通じて理解しました。また、「結論の仮説」と「問題解決の仮説」という2種類に仮説を分類できることも学びました。特に、家具メーカーのWebマーケティングにおける指標へのアプローチは、私にとって非常に参考になりました。メーカーで働く身として、定量的なKPIを用いた費用対効果の分析の重要性を改めて認識しました。WEEK04では内容が難しくなってきましたが、総合演習や課題に取り組みつつ、学びを継続し、単位取得に向けて努めていきます。 マーケ戦略の実践は? WEEK4で学んだ問題解決の仮説を職場で実践する予定です。「仮説思考をマーケティングに適用する」という視点から、3Cや4Pを効果的に利用し、リーダーシップではパッションを持つことを意識して行動したいと考えています。具体的には、ウイスキーの事例で、かつて高価とされていたウイスキーが、若者向けに手頃な缶製品として売上を拡大させた点を参考にしています。これは、今後の新商品の販売においても活用できると感じています。 未来予測の信頼は? 過去のデータを基にした予測はAIに頼ることが多いですが、未来の予測、つまり仮説を立てる部分においては、人間の方が優位であると感じます。他大学では生成AIを使用する学生が増えており、Web上での期末試験にも対策が講じられていることを知りました。生成AIに対抗できるよう、自らの仮説構築や現場課題の抽出を迅速に行い、PDCAサイクルをスムーズに回していきたいと考えています。今回学んだ知見を活かして、12月の競馬のレース、特にデータが少ない馬のレース予測にも挑戦してみるつもりです。

クリティカルシンキング入門

批判的思考で深める分析術

本当に合っているか? 大前提として、「その答えは本当に正しいのか?」と自分自身に問いかけ、批判的に考えることが重要です。以下の手法を活用していきたいと思います。 整理のポイントは? まず、データを視覚的に整理し、合計や割合、昇順下降順で加工することで視覚的に情報を得られるようにします。全体を定義したうえで、漏れがなく重複しないように(MECEの原則に基づいて)分解を行います。この際、「いつ」「誰が」「どのように」という切り口から考えることがポイントです。 どの角度で考える? さらに、分析を効率的に進めるために型やフレームを身につけることが大切ですが、まずは手を動かし、そこから見えてくるものに対し「この角度はどうだろう?」や「この視点に漏れはないだろうか?」と批判的に思考を繋げていきたいと思います。 分析の仮説は? 営業戦略やプロジェクトの方針を検討する際には、営業データを多角的に収集することを心がけます。しかし、現状の分析が広がりすぎてしまう傾向があるため、大まかな見立てを立て、仮説を持って分析を行えるようにしていきたいです。 伝え方の工夫は? また、分析結果や方針を伝える際には、データを視覚的に整え、受け手の理解を深める努力をしたいと思います。具体的には、次のことを心がけます。まず、業務が「誰にとっての」「何のための」「どこまでをゴールにした」ものなのかを明確にします。そして、事象を分析する際には、必要なデータが十分に揃っているか確認します。作業を進める中で、分析に漏れがないか、異なる角度から検討が可能かを一度立ち止まって考察します。最後に、データを視覚的にわかりやすく作成することで、自身の分析にも役立ち、他者への説明の際にも理解しやすくなるよう努力します。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

「分析 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right