クリティカルシンキング入門

問いが導く成長の旅

「問い」から始まる重要性は? 特に下記の3点が学びとなりました。 まず、「問いから始めること」の重要性です。人間は「なんとなく」から始めがちなので、「問い」は何かを意識することがスタート地点となります。 問いの共有がもたらす効果は? 次に、「問いを残すこと」の大切さを学びました。問いを意識しても忘れてしまったり、その内容を忘れてしまうことがあります。したがって、問いを常に意識し続けることが重要です。 さらに、「問いを共有すること」も理解しました。仲間内で問いを共有することで、自分一人ではなく、組織全体の力で解決に導くことができるというところが大切です。 データ視覚化の新たな気付き ★課題についての学び まず、データの分解と視覚化の重要性です。データを単に表示するだけでなく、課題の本質を明確にするためには、データの適切な分解と視覚化が不可欠であることが分かりました。特に、データを複数の視点から分析することで、隠れた問題を浮き彫りにすることができます。 明確な課題設定の重要性を再認識 次に、課題設定の明確化の必要性を学びました。課題を適切に設定し、具体的に表現することで、問題解決に向けた取り組みがより効果的になることを認識しました。曖昧な問題設定ではなく、具体的な課題を明示することが解決策の提案や実行を促進します。 ターゲットに応じた戦略はどう構築する? さらに、ターゲットに応じた戦略の必要性についても理解しました。特定のターゲット層に焦点を当てた戦略が有効であり、ターゲットを絞り、そのニーズに合った商品やサービスを提供することが課題解決につながるという学びです。 柔軟なマーケティング戦略の意義とは? マーケティング戦略の柔軟性も重要だと学びました。市場の変化に対応し、季節ごとに異なるニーズに応じた柔軟な戦略を展開することで、持続的な成長が可能になるという洞察を得ました。 システム導入で重要なサポートとは? システム導入のサポートに関しては、タスクを細分化しそれぞれに役割を持たせ、最終的にゴールに導く予定です。以下の2点を重視します。 1. チームで動くとき、ミーティング時などには常に最初にイシューを明確にして目線を整えること。人は意識しても忘れてしまうものだからです。 2. 議論の方向性がズレそうなとき、イシューは何かを考えて素早く軌道修正できる思考を持ち続けること。悪意がなくともズレてしまうことが多いためです。今後は問いを続け、本質や核心に迫る議論ができるよう行動していきます。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップで成長を導く実践テクニック

リーダーシップってどう考える? リーダーシップに関する一般的なイメージは特性理論に基づくものと考えられていますが、実は行動理論や条件適合理論によって、その再現と有用性が高められることが示されています。この中で、マネジリアル・グリッドという新しい概念に触れました。 組織達成の秘訣は? リーダーシップは、組織の目標を達成するために個人が主体となって、人や組織を動かす取り組みです。これは、長期的なビジョンを持ち、メンバーを動機づけ、統合していくことで変革を推進する機能とも言えます。 理論を比較すべき? リーダーシップの理論には3つの主要なフォーカスがあります。まずは、リーダーが本来持っている特性に注目した「特性理論」、次に、優れたリーダーの行動に注目した「行動理論」、そして、状況に応じてリーダーの行動を変える「条件適合理論」です。 どう実践すれば良い? 条件適合理論の実践方法としてはパスゴール理論があります。これは、有能なリーダーが部下の目標達成に必要な方向性や支援を示すというものです。リーダーは、市場競争や経営体制、組織体制といった環境要因と、部下の自立性や経験、能力などの適合要因を考慮し、指示型、参加型、支援型、目標達成型の4つの行動を使い分けます。各行動の選択は、環境要因や適合要因に基づいて、支援方法を最適化することが重要なポイントです。 グリッドの意味は? 一方、マネジリアル・グリッドは、人への配慮と生産への配慮を五つの段階で表現したもので、これも条件適合理論の応用と言えるでしょう。 理論を作業に活かす? 条件適合理論については、プロジェクトの進行に限らず、メンバーへ仕事を依頼する際のプロセス構築に役立ちます。自分自身では、指示型と参加型のみを使っていましたが、他のタイプ、特に支援型や目標達成型を試してみたいと思います。 上司の比率を知る? また、マネジリアル・グリッドを用いて、自分の上司がどのような割合で人と生産に配慮しているのかを分析し、メンバーの働き方や成果にどのような影響があるのかを明らかにすることに興味を持ちました。 実践方法は合ってる? この1週間は、まず指示型ではなく支援型を実践し、コーチング的な視点でメンバーの成長をサポートしました。また、有事の際は指示型で対応し、能力あるメンバーには参加型でアプローチを試みました。 次の展開はどう? 来週までにマネジリアル・グリッドを使った因果関係の分析を進めていきたいと考えています。

デザイン思考入門

デザイン思考で本質を見つめる

デザイン思考の目的は? デザイン思考とは、人間中心設計のアプローチを体系化し、どのようなステップを踏んで実践していくかを示すプロセスです。まず、ユーザーの行動や感情を観察し、実際に体験するなどして、彼らが抱える課題やニーズに共感し、本質的な問題を明らかにすることが重要です。その上で、数ある課題の中から、イノベーションに結びつく本質的な問題を見出すことがポイントとなります。 なぜ解決策が重要? また、解決策のためには、アイディアを幅広く発散した後、最適なものを選別、具体化し、ユーザーからのフィードバックを受けながら改善を重ねるプロセスが求められます。こうした試行錯誤や開発者とユーザーとのインタラクションにより、単なる技術やプロダクトアウトの発想ではなく、顧客体験から新しいイノベーションを創出することが可能となります。 調査の本質は何? 私が現在関わっている調査研究業務の支援では、直近で手がける調査企画において、本質的な課題が何かを再確認することが大切だと感じています。関係者へのヒアリングや検証方法の検討を通じ、解決策がどのように次の施策へと反映されるのかを、常に意識しながら作業を進めています。 議論はどこで迷う? 講義を受けた後の振り返りでは、現場で本質的な課題について合意を形成することが難しく、「とりあえず手がけられる解決策」へと流れてしまうことが多いと実感しました。誰に向けた施策を,どのタイムラインで求めるのかによってゴールが大きく変わるため、解決すべき対象を明確にし、本質を見失わないように議論を深めていく難しさを感じています。 行動促進の鍵は? 直近では、勤務している大学の研究室で実施しているプロジェクトに関連し、ある行為を習慣化してもらうための要因や、心情的なプラス効果がどう特定の行動促進につながるかを、デザイン思考の視点で分析することを模索しています。調査企画を進めるにあたり、仮説、調査設計、調査票設計の各段階で、本質的な課題がしっかりと捉えられているか再度検討したいと思います。 知識整理の実践は? さらに、デザイン思考について他書籍や学んだ内容を資料や文章としてアウトプットしながら、知識を整理・定着させたいと考えています。将来的には、医療現場でのインタビューや現場調査の際に、広く不満やニーズを収集し、そこから本質的な課題や心理的なインパクト、行動への制約を理解するためのプロセスにデザイン思考の要素を取り入れることが目標です。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

マーケティング入門

リアルな本音、ここに集結

どうしてヒットした? ある事例から、長年にわたって衣料品の製造販売で培った強みを活かし、マスクやスーツパジャマといった製品がヒットした背景を学びました。時代や社会情勢の変化に伴う顧客ニーズの変動、さらには隠れたニーズの本質を捉え、スピード感をもって製品を市場に投入することや、キャッチ―で分かりやすいネーミングで用途を明示する戦略が功を奏したと理解しました。 本音は掴めたか? さらに、顧客の真のニーズを見極めるための手法として、行動観測やデプスインタビューの有効性を確認しました。ただし、デプスインタビューにおいては、報酬を提示することでかえって本音が引き出しにくくなる可能性がある点を学び、本音を言いやすくするには、事前の雑談を通じて信頼関係を構築することが有効であると再認識しました。また、商品やサービスの真のニーズを探る能力は、日常的な物事への想像を巡らせる癖によって養われるという点も実践していきたいと考えています。 どこにペインを感じる? また、顧客ニーズだけでなく、解決すべきペインポイントの特定も新規事業を検討する上で重要な要素です。事業化を実現するためには、曖昧なニーズではなく、実際にお金を使ってでも解決したいと感じる課題に注目することがビジネスの種になると理解しました。さらに、カスタマージャーニーの作成を通じて、ユーザー目線で体験を観察し、ペインポイントを特定して適切な解決策へと導くことが、事業化のポイントであると学びました。 信頼構築は上手? 実務は必ずしも課題解決型の事業ではないため、ペインポイントの深掘りは難しい面もありますが、自社の強みを生かし、顧客の隠れた真のニーズを探り出す姿勢を忘れずに取り組んでいきたいと考えています。特に、デプスインタビューにおいて報酬提示が本音を引き出しにくくするという点は、これまで気づいていなかった新たな学びとなりましたし、事業推進者が目の前にいるだけで本音が言いにくくなるという現状にも、改めて注意する必要があると認識しました。 やり方は確認した? ・行動観測では、実際に想定顧客の動きを観察し、ニーズを正確に把握することに努めます。 ・デプスインタビュー実施では、顧客の深い本音や改善点を引き出すため、信頼関係の構築に心がけながら取り組みます。 ・カスタマージャーニーの作成によって、顧客のタッチポイントや行動、思考をファクトベースで分析し、実態を正しく把握することを目指します。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

データ・アナリティクス入門

比較が拓くデータの新常識

データ比較はどう進める? 分析の基本原則は「比較」であり、まずはデータを比較する目的に立ち返ることが大切だと感じました。データ収集の前に仮説を設定し、その仮説を検証していくプロセスの中で、データをどのように加工して示すかという点が今回の学びのポイントでした。加工の視点としては、大きく代表値と散らばりの2つに分けられ、代表値には単純平均、加重平均、幾何平均、中央値があること、そして散らばりについては標準偏差で表現されることを学びました。 外れ値の対応はどうする? 今までは単純平均しか扱ったことがなく、重みを考慮した平均やべき乗を利用した手法は初めて触れる内容でした。また、平均値だけでは捉えきれない外れ値に対しては中央値を用いることで対応する方法がある点も新鮮でした。標準偏差については、なぜルートがつくのかという計算過程が理解でき、正規分布の場合にデータの約95%が±2個分の範囲に収まるという納得感を得ることができました。これまで平均を取るだけで思考が止まってしまっていた部分を、散らばりの視点からデータ活用の具体的なイメージに結び付けることができました。 移住データで何が見える? また、人口減少対策において活用される移住者データを分析することへの関心が高まりました。各市町村の移住者データを様々な属性で分析し、特に年齢や家族構成の散らばりを調べることで、どの施策に注力すべきかを推測するひとつの手法となり得ると感じています。現状、移住促進施策はUターン促進とIターン促進の大別がなされており、例えばUターンでは地元を想う集まりの取り組みを強化し、Iターンではボランティアや副業などにより継続的な関わりを持つ関係人口への支援を強化するという方針です。こうした大まかな区分に加え、より具体的な属性の分析が進むことで、移住理由を数値的に捉え、具体的な施策検討に役立てることができそうです。 今後の分析計画は? 今後は、所管部署に対して詳細な個別データの入手が可能かどうか問い合わせる予定です。データが手に入れば、エクセルを用いた分析に取り組みたいと思っています。特に県全体と沿岸地域の違いを明らかにすることで、一緒に施策を進める市町村の担当者や移住コーディネーターの方々の取り組みにも影響を与えられるのではないかと感じています。5月20日(火)に、所管部署の担当者が意見交換に来訪する予定のため、その際にデータ入手の依頼を進めるつもりです。

データ・アナリティクス入門

比較で見える、成長の瞬間

分析の基本は? 分析の本質は「比較」にあります。まず、分析は①プロセス、②視点、③アプローチの3つの軸で進めることが基本です。プロセスは大きく4つのSTEPに分かれます。まず目的や問いを明確にし、その問いに対する仮説を立てます。次に、既にあるデータや新たに収集する情報(見る、聞く、行う)を活用してデータを集め、最後に分析によって仮説やストーリーを検証していきます。データ収集時は、サンプリングバイアスや設問設計の影響に注意し、適切なA/Bテストの実施も視野に入れます。 重要視点は何? 次に、分析を行う際に重要な視点は5点あります。まず、インパクト:どの程度の影響があるかを把握し、優先順位をつけること。次に、ギャップ:比較対象や軸を明確にし、どの部分が異なるのかを確認すること。さらに、トレンド:時間の経過による変化の傾向を把握し、異常な部分を見つけること。加えて、ばらつき:全体の分布がどれだけ偏っているかを平均値や中央値などで見ること。そしてパターン:全体や変曲点から法則性を読み取ることが大切です。 グラフの工夫は? また、アプローチとしては、グラフや数字、数式を用いてデータを視覚化する手順があります。まず仮説と伝えたいメッセージ、次に比較対象を明確にし、どのグラフを使用するかを検討します。一般的な項目の比較では横棒グラフやウォーターフォールチャート、時系列の変化を示す場合は折れ線グラフや縦棒グラフ、構成や分布を表すにはヒストグラムや円グラフ、相関関係を示すには散布図が有効です。横棒グラフは特に多用されますが、加工に手間をかけることでより分かりやすくなります。 日常の見直しは? また、日常の業務や振り返り、目標設定・計画立案において、MECEや層別分解といった手法を使いながら、固定観念や偏った思考を見直し、仮説思考を鍛えることも重視しています。社内では、数字や思い付きだけで次を考えるのではなく、定量・定性データ分析の手法を共有し、分析は「比較」に基づくという前提と、意思決定を目的とするという考えを全員で理解しています。この目線合わせのもと、各種フレームワーク(たとえば3C、クロスSWOT、セグメンテーション/ターゲティング/ポジショニング、4Pなど)を取り入れながら、What/Where/Why/Howのステップを踏んで分かりやすいビジュアル資料を作成し、あるべき姿を説得力ある形で提案できるよう学び続けています。

クリティカルシンキング入門

自己流を見直す気づきの瞬間

なぜ自己流だった? 1か月を振り返ると、これまで自己流で仕事を進めていた自分に気づかされました。講座の中で、自らの行動や考え方を見直す必要性を実感しました。 広い視点が足りない? 実際の演習で、ファストフードチェーンの事例をもとに考察した際、自分に当てはめるだけで他の視点を捉えることができず、十分な多角的アプローチができませんでした。 根拠の曖昧さは? 自分を振り返ると、これまで考えの根拠を明確にせずに行動していたことや、問いを明確にしないまま解決策に着手していたため、説得力に欠け、振り返りや原因分析ができていなかったと感じました。講座で多くの気付きを得たものの、理解したつもりでいた内容をすぐに忘れてしまうことも実感しました。 評価と気づきは? AIコーチングの総評では、自己の行動や思考に対する認識があり、改善の必要性を感じ取っている点を評価されました。また、具体的な行動計画を立て、異なる視点を活用することがさらなる成長につながると示唆されました。 他視点はどう使う? 現時点では、会議中などで即座に自分以外の視点を提示するのは難しいですが、予定がある場合は事前に別の視点も考慮するように努めます。案内作成など時間に余裕がある際には、試案の後に一定の時間を置いて見直すことを実践し、全体的に相手が理解しやすい文章を意識するようにしています。 メールは分かりやすく? また、メールの文章については、主題、根拠、理由を正確に伝え、誤解を生まない表現になっているかを確認してから送信することを心掛けています。現時点では見直しに時間がかかる状況ですが、短時間で効率よく確認できるように改善していきたいと考えています。 会話の脱線はどう? 会話においては、思いつきで本題から逸れることが多く、不要な情報を伝えることで自分の意識がそれるだけでなく、他者にも迷惑をかけていると感じています。そのため、脱線した発言は慎むように努めています。 聞く姿勢は整ってる? 話を聞く際には、つい偏った見方をしていないかを意識し、発言する際は伝えるべき内容が何であるかを明確にして、論理的に組み立てるよう心がけています。文章や資料作成においては、主題、問い、根拠など伝えるべきポイントを整理し、相手にスムーズに理解してもらえるよう努めています。

データ・アナリティクス入門

グラフと平均値で掴む分析術のコツ

グラフは何を示す? グラフの活用法とその分析時の手法について考えます。まず、円グラフは各要素の割合を確認したい場合に使用します。一方、ヒストグラムは全体のばらつきを視覚的に把握したい時に便利です。グラフを活用する際は、事前に仮説を立て、その仮説に基づいて予測データと実際のデータを比較し、深堀することが重要です。 平均値はどう使う? 分析手法としては、様々な平均値があります。単純平均はただ平均値を求める方法です。加重平均は重みを考慮して算出され、例えば東証株価指数がこの方法を用いています。幾何平均は成長率や平均何倍になるかを知りたい時に使用されます。外れ値の影響を避けたい場合は中央値を用いるとよいでしょう。また、標準偏差を利用することで、データのばらつきを把握できます。標準偏差が小さいほどデータは均一であることを示します。これに基づき、2SDルールでは95%のデータが大よその範囲内に収まるとし、5%のデータは外れ値とされます。 リスクはどう把握? 施設のポテンシャルや価格の分布を分析する際には、ヒストグラムや散布図を使うことで、戦略に対するリスクを特定できます。例えば、ポテンシャルの高い施設で高コストの外れ値がある場合、戦略的値下げの必要性を検討する余地があります。また、小さい施設で安価なコストの外れ値はベンチマークとして他施設に引き合いに出されるリスクとなる可能性があります。 医療データの精度は? 医療機器のデータ精度を分析する際、標準偏差を利用して精度の精確性を確認することができます。業界の標準として、変動係数CVが2%以下であれば精度の担保がされているとされています。変動係数は標準偏差を平均値で割ることで算出されますので、まず標準偏差を求める必要があります。特に機器の精度が外れ値を持たず、許容範囲内に収まることが求められるため、標準偏差の知識は重要です。 適正価格はどう算出? 価格交渉の際、統一グループやGPO施設カテゴリ内の平均価格やベンチマークの引き合いがあります。この際、どの「平均」が使用されているかを確認し、データを鵜呑みにせず、グラフや散布図、加重平均や中央値を用いて適正価格を示すことが重要です。 仮説はどこから? 最後に、分析に取り掛かる前に仮説を立てることが大切です。仮説に正解はありませんが、経験に基づいた想像力を活かし、いくつも仮説を洗い出すことが有益です。

リーダーシップ・キャリアビジョン入門

エンパワメント実践で自律を育む方法

エンパワメントって何? エンパワメントについて、日常業務である程度理解していたつもりでしたが、特に重要だと思われる目標設定の観点を整理できたことが非常に有意義でした。エンパワメントを行う際は、相手が目標や仕事を理解しているか(MUST)、努力すればできるか(CAN)、そしてやる気になるか(WILL)がポイントだと考えています。 リーダーの役割は? エンパワメントとは、目標達成のために組織構成員が自律的に行動できる力を与えるためのリーダーシップ技術の一つです。リーダーは組織構成員に権限を委譲しますが、最終責任はリーダー自身が持つという立場を取ります。そのため、リーダーは目標を明確にし、適切な仕事を割り当て、計画の策定や実行プロセスを支援します。 目標はどう決める? 目標設定において重要なのは、組織構成員をやる気にさせることです。メンバーが分からない場合は説明し、できない場合は不安や困りごとを引き出して共に解決し、やりたくない場合にはやりたくなるような意義付けが必要です。良い目標とは、使命感に基づく意義があり、行動が具体的にイメージでき、測定基準と度合いが明確なものです。 どの仕事が適切? エンパワメントに向く仕事と向かない仕事があります。向く仕事は、メンバーが目標を理解し、能力より少し高い難易度のもの、つまり育成の観点があるものです。逆に向かない仕事は、権限の限界があるもの、ミスが許されないもの、緊急の対応が求められるもの、一度きりのものなどです。 任せ方はどうする? 仕事を任せる際には、期限と成果の期待値を伝えるだけでなく、目標設定を行います。メンバーがその仕事をやりたくなるような意義を伝え、育成を視野に入れた難易度設定を行い、阻害要因を取り除くなどの対応が必要です。 結果をどう振り返る? さらに、これまで行ってきたエンパワメントの結果も整理したいと考えています。現在、上半期の業績計画における予算と実績の差異について、メンバーにその原因追求と改善策の策定を依頼しています。来週にはレビューが上がってくる予定ですが、その際、真因分析や改善策が不十分であれば、これまでのように指示するのではなく、メンバーの説明から不足点を質問で引き出し、阻害要因を取り除くことで、彼らが自発的に真因分析の深化や改善策のブラッシュアップができるよう、目標設定とプロセス管理の面で支援していきたいです。

「示す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right