データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

アカウンティング入門

構成要素で読み解く利益のヒミツ

構成要素ってどう考える? 構成要素を考えるという視点が特に印象に残りました。高い売上高の要因を探る際、まず売上を単価と客数に分けて整理し、それぞれを分析することで全体を正確に把握できるという点が学びとして響きました。 利益向上はどう実現? また、利益向上のためには売上を伸ばすか、コストを下げるかの二つの選択肢があるものの、単純にコストを削減するだけではなく、その結果として売上に悪影響が出ないかを注意深く検証する必要があるという考え方にも納得しました。 実務にどう繋げる? 直接業務に活かすのは難しい部分もありますが、分析の際に構成要素に分けて考える姿勢や、影響度合いを踏まえた意思決定の重要性は、日常業務においても間接的に活用できる貴重な学びだと感じました。 他業界の意見は? 今回の設問では、コーヒー豆の単価が下がることによる影響や、なぜ売上が順調であるのかを考えることで、利益向上のために売上を伸ばす方法や、削減すべきコスト、必要な情報について再考する良い機会になりました。また、他業種・他業界の方々がどのような視点を持っているのかを伺ってみたいという期待も浮かびました。

アカウンティング入門

事業の価値に隠れた数字の秘密

P/Lの利益は何を示す? P/Lの5つの利益は、① 売上総利益(粗利)、② 営業利益(本業からの利益)、③ 経常利益(財務活動を加味した利益)、④ 税金等調整前登記純利益(一時的な損益を反映した利益)、⑤ 当期純利益(1年間の最終的な利益)です。 どの指標に注目? 一見、カフェという同じ業態でも、提供しようとする価値が異なれば、重視すべき指標も変わってきます。単価、客数、コストなど、どの要素を削減(または増強)すべきかは、事業が提供する価値次第で決まります。したがって、事業の価値を念頭に置きながらP/Lを見ることが重要です。 戦略はどう選ぶ? また、他社の事例を参考にすることもありますが、事業が提供する価値によって取るべき戦略が全く異なることが分かりました。安易な比較や模倣を避け、自社の事業価値を十分に理解したうえで戦略を検討する必要があります。さらに、これまではホームページなどで定性的な情報に目を向けていましたが、今後はP/Lの数字や決算に関するニュースを確認することで、事業を通じてどのような価値を提供するのかをより明確に把握できるようになると感じています。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

データ・アナリティクス入門

広い視野で挑む仮説の極意

仮説全体はどう捉える? 仮説の立て方について学んだ内容の中で、まず複数の仮説を設定し、その網羅性を高めることが重要であると感じました。一つの視点に偏らず、様々な可能性を検討することで、問題の全体像を見失わないアプローチが実現できると思います。 裏付けデータはどう検討? また、仮説を裏付けるデータだけでなく、反証する可能性のあるデータも収集する必要性を学びました。データの集め方一つとっても、どの側面から情報を集めるかによって、結果の信頼性が大きく変わるため、留意する点が多いと感じました。 他部門への影響はどんな? さらに、全社的な課題の場合、仮説は自分の部門だけに留まらず、他の部門にも影響を及ぼす可能性があるため、その立て方には工夫が求められると実感しました。たとえば、営業利益の低下という問題は、売上減少だけが原因か、製造ラインの効率低下が関与しているのかといった複数の視点から検討する必要があります。局所的な原因にとらわれず、マクロな視点で多層的かつ複眼的な仮説を立て、各部門としっかりコミュニケーションをとることが、問題解決に向けて不可欠だと考えました。

マーケティング入門

受講生の本音!学びのリアルな瞬間

魅せ方の違いって何? 同じ商品であっても、ネーミングやパッケージといった魅せ方の違いで売上が大きく変わることがあります。そのため、顧客の抱える悩みやニーズに応じた工夫が重要です。 普及要因はどう見る? イノベーションが普及するためには、比較優位、適合性、わかりやすさ、使用可能性、可視性という要因が鍵となります。実際、これらの要素が備わっている商品は、顧客から高い支持を得やすいと言えます。 イメージはどう働く? また、人はあらかじめ持っているイメージで選択を判断する傾向があり、そのイメージを活かしたネーミングは、新商品へのハードルを下げる効果があります。さらに、パッケージの視覚的な工夫により、商品に触れる機会が増えるだけでなく、インパクトがある表現や覚えやすいデザインは、リピート率の向上にもつながります。 企業分析って何が大事? 企業分析の際には、企業が重視する点や提供する価値を評価するために、イノベーションの普及要因からのアプローチが有効です。また、日頃の資料作成においても、情報が正確に伝わるよう「わかりやすさ」を追求することが求められます。

クリティカルシンキング入門

分析の視点が変える売上の未来

情報をどう分解? 数字の見方や分け方を工夫することで、異なる分析結果が導き出されたり、隠れていた情報が見えてくることがあります。情報を正確に分解するための手法として、MECE(Mutually Exclusive, Collectively Exhaustive)という考え方があります。情報を層別、変数、プロセスなどの視点から漏れなくダブりなく分解することで、新たな洞察を得ることができます。 売上分析はどう? この方法は販売関連の数値分析においても非常に有用です。例えば、製品の売上分析を行う際には、売上高を売上別、業種別、チャネル別、機能別といった多様な視点で分析することが可能です。これにより、情報の分解や視点の変化が分析に役立つと感じました。 原因分析はどう? 今後、売上情報を分析する際には、MECEを常に意識し、情報の切り方によって得られる洞察の違いを意識しつつ業務を遂行していきます。特に、売上が下がっている場合、その原因を分析する際には、どのポイントに課題があるのかを細かく見つめ、解決策を模索する努力をしていきたいと思います。

アカウンティング入門

テーマパークに隠れた会計学

テーマパーク会計はどう見る? あるテーマパーク事業を営む企業では、人件費を販管費ではなく売上原価に計上しているという事実に驚かされました。テーマパーク自体が商品であり、そこで働くスタッフが商品である登場人物として売上に貢献しているという独自の考え方が、会計処理に現れているのだと思います。この事例を通して、「帳簿をつける際には勘定科目に正解はなく、会社が収入や支出をどのように位置づけるかが重要」という言葉の意味が、より深く理解できたと感じます。 ソフト導入で悩む理由は? 会計ソフトの導入支援を行う際には、まずクライアントの事業内容をしっかりと把握し、どのような売上、費用、資産、負債が発生し得るかを具体的に想定することが重要だと考えています。入力したデータをどのようなセグメントで分析すれば参考になるのか、イメージを膨らませながらお客様と対話していきたいです。そのためには、事前にホームページなどを通じて事業内容を確認し、情報が不足している場合には同業他社の財務諸表の構造を調べた上で、初回の打ち合わせで不足情報をヒアリングしながら支援を進めていくつもりです。

アカウンティング入門

非日常に隠れた会計戦略のカラクリ

業績分析の意義は? オリエンタルランドに関する演習を通じて、エンターテインメント業界においてもアカウンティングの視点が不可欠であるという大きな気づきを得ました。これまで、テーマパークのような非日常体験を提供する業態は、感性やブランド力が中心であり、数字とはあまり結びつかないと考えていました。しかし、今回の分析で、顧客の特性から提供価値、業務活動や経営資源、そして売上や原価、資産といった財務情報に至るまで、すべてが論理的に整理され戦略的に設計されていることを実感しました。 経営全体を見る理由は? また、今回学んだアカウンティングの視点やフレームワークは、今後の業務でクライアントの課題を整理する場面で活かせると考えています。たとえば、新規システム導入の相談を受けた際には、単に技術的な要件や予算を確認するに留まらず、「そのシステムがどのような価値を提供するのか」「どの業務活動と関係しているのか」「導入によりどのコストが削減され、どの資産が活用されるのか」といった経営全体を俯瞰する視点で問いを立てることで、より本質的な提案が可能になると感じています。

データ・アナリティクス入門

柔軟な仮説が未来を拓く

初期仮説の危険性は? 仮説は初めから決めつけず、幅広い視点で持つことが大切です。あらかじめ仮説を立て、それに基づいて検証するため、もし初期の仮説に誤りがあれば、その後の工程にも大きな影響が出る可能性があります。 計画的データ収集は? また、仮説を検証する際には、必要なデータを計画的に収集することが求められます。必ずしも全ての情報が揃っているとは限らないため、誰にどのように情報を収集するか、目的に沿って進める必要があります。 売上データで何発見? 日々の業務で売上データを見る中で、発生した事象に対してまずは幅広く仮説を出すことが有効だと感じました。これまで漠然とした感覚で仮説の検証に取り組んでいたため、今後はより意識的に取り組むことが必要だと思います。 周囲の意見は頼も? 仮説を立てる際は、自分一人で考えるのではなく、周囲のメンバーからの意見も取り入れ、網羅性を高めるよう努めます。過去の経験や先入観をなるべく排除し、フラットな視点で物事を俯瞰することを心がけるとともに、仮説検証の目的を踏まえて最適なデータ収集方法を選択していきます。
AIコーチング導線バナー

「売上 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right