データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

多角的視点で挑む学びの挑戦

プロセス分解って何? プロセスを分解するという観点を学びました。3Cや4Pのフレームワークを用いて、どの切り口で分析するかまでは考えることができたものの、その視点から仮説を立てる際に、設問の誘導がなければ行き詰まる可能性があると感じました。最終的には、4Pでプロモーション方法に着目し、3Cで顧客視点から行動パターンやプロセスを考えるという方法を組み合わせるアプローチを理解しました。 学びは販促にどう活かす? マーケティングの面では、従来の主要な事業である顧客設計品の生産・販売に加え、近年では新商品の市場投入が進んでいるため、学んだ考え方を販促活動に活用できると感じました。どの業界のどの顧客にどのようにアプローチし、望ましい結果を得るかを考える際に、今回の手法が大いに役立つと思います。 計画検証はどうすべき? また、投資検討の面でも、現状は確定した案件に基づいて投資判断がなされていますが、今後は未確定案件に対する投資検討にも学んだ手法を生かし、効果やリスクの検証を行っていけると考えています。さらに、担当者との定期的な打ち合わせで共有された活動計画について、計画が効果的に進んでいるか、もし計画通りに進んでいなければその原因や改善策を検討する際にも、今回学んだアプローチを活用していきたいと思います。

アカウンティング入門

会計分析で見える企業の魅力

利益指標の本質はどこ? 営業利益は、本業から得られる利益を示す指標ですが、本業以外の要因は反映されていないため、経営全体の成功を完全には表していません。一方、経常利益は本業外の損益も加味しており、企業が経常的に利益を出せる体質かどうかを判断する上でわかりやすい指標であると感じました。最終的な利益を表す当期純利益は、特別損益や税金なども考慮されるため、企業の全体像を把握する際に役立つと理解しています。 業界構造の違いは何? また、業界ごとにP/L(損益計算書)の構造は異なります。例えば、自動車業界のように原価の割合が高い場合や、クラウドサービスのように原価が低い業界もあると知りました。製造業では原価が高い傾向にありますが、企業によっては販管費や研究開発費に大きな特色が見られるため、その違いにも興味が湧いています。 事業価値は一致している? 同一業界内で数社のP/Lを比較し、その企業がどのような事業価値を提供しようとしているのか、またウェブサイトで公開されているビジョンや戦略と一致しているのかを考察してみたいと思います。自分でゼロから比較するのは難しい面もありますが、他者が行った業界ごとの比較記事などを参考にしながら、これまでの講座で得た知識を活かして財務諸表を読み解いていきたいと考えています。

戦略思考入門

企業成長の鍵を握る視点と判断

成長戦略の見直しは? 企業が持続的に成長するためには、意識や進め方の変化が避けられない場面がしばしば見受けられます。その過程で、どのようなことが重要であるかを見極めるための軸を持ち、何を優先し、何を捨てるべきかを判断することが重要だと感じました。特にROIの視点については、これまで十分に考慮されていなかった部分であり、売上比率や特性とともに分析する必要性があると感じました。また、顧客自身の成長可能性も客観的に判断することが求められると考えています。 業界の常識は? 医療業界は狭く、習慣に基づいた風潮が色濃く残っています。「昔からそうだから」「今までこうだったから」という理由だけで判断するのではなく、なぜそのような判断が行われてきたのかを問うことで、事象を客観的に見直したいと思います。このような保守的な視点を改め、見積もりの出し方や後輩の教育プログラム、営業スタイルなど、様々な角度から見直しを図る必要があると感じています。 研修の未来は? さらに、従来の研修をそのまま続けるかどうかについても、競合他社の動きや他業界の動向を踏まえ、何が必要で、どこまで実現可能かを計画したいと思います。その結果、研修が参加者の成長に寄与し、彼らが同じ方向を向きながら成果を出せるようにしていきたいです。

アカウンティング入門

半間比が明かす企業戦略の秘密

半間比の効果は? 今週の学習では、PL(損益計算書)の半間比の見方を通して、各店舗や企業がどのように価値を創造しているかを理解できた点が非常に印象的でした。具体的には、ある業態では高コストながら高単価を狙い、また別の業態では気軽さを武器に購買数を増やすという違いがあり、半間比を比較することで経営方針の違いが明確になりました。数字の背後にある戦略を読み取る視点を身につけられたことが、今回の大きな収穫です。 決算書の読み方は? この学びを自分の仕事に活かすためには、まず自社の決算書やPLを正確に読み解く力を養うことが重要だと感じました。さらに、競合他社の決算書や業績資料と比較することで、自社の強みや改善点がより明確になると考えます。また、新聞や経済誌に掲載されている企業の業績記事に接する際も、PLや半間比の視点を持つことで内容の理解が深まり、現実のビジネスへの洞察が広がると実感しました。 行動に移すには? 実際の行動に移すため、まずは日常的に新聞などの経済情報に触れ、気になる企業や話題に上がる企業について、試算表やPLなどの財務情報を毎週調べるようにしていきたいと思います。こうした継続的な情報収集と分析の習慣を通して、財務の見方や経営判断に必要な視点を少しずつ身につけていけると期待しています。

アカウンティング入門

数字で読み解く戦略のヒミツ

財務諸表をどう学んだ? 今回の講義では、PL、BS、CSといった財務諸表の種類や、その各諸表が数値に基づく定量分析を通じて企業の現状把握や健全性の評価にどのように役立つかについて深く学びました。数値情報に基づく客観的な判断が、企業活動の全体像を理解するうえで不可欠であると実感しました。 戦略策定の視点は? 特に、事業戦略や技術戦略の策定において、企業の現状を俯瞰的かつ数値的に捉えることの重要性が明確でした。講義では、企業全体だけでなく、組織内の各部門や他分野の企業と比較しながら、PL・BS・CSの各項目が持つ意味合いや特徴を分析する手法についてディスカッションしました。その結果、各項目が企業の本質や方向性を示す具体的な指標となる点が理解できました。 多角的アプローチは? また、ディスカッションでは複数の仮説を立て、各仮説に基づいて実際の財務分析を行うプロセスを通じ、分析方法の幅を広げることができました。これにより、従来の単一の視点に加えて、多角的なアプローチが戦略策定に有効であるという認識が深まりました。 今後の分析をどう? 今後は、今回の学びを活かして、企業や組織の財務状況を定量的に評価し、改善点や新たな戦略の方向性を具体的に示す分析を実践していきたいと考えています。

データ・アナリティクス入門

仮説検証で拓く本質への道

本質に迫る秘訣は? これまでは、都合の良い答えに飛びつき、裏付けが偏った分析をしてしまっていたことに気づきました。しかし、問題解決のプロセスに沿って仮説と検証を正しい順序で進め、事実に基づいて判断することで、本質的な課題に早くアプローチできると学びました。 目的の重要性は? また、分析に取り組む前には、まず目的を明確にすることが極めて重要であると実感しました。目的が曖昧だったり、途中で忘れてしまうと、結論を導き出せず成果へとつながりません。定期的に目的を振り返ることで、必要に応じた軌道修正が可能になるという点も大きな収穫でした。 複数視点の意味は? さらに、分析を行う際には、単一の数字や結果だけに頼らないため、比較を行うことの重要性を再認識しました。一つの指標だけでは陥りがちな思い込みを避け、複数の視点から検証することで、説得力のある結論に近づけると感じました。 具体策をどう試す? 具体的な実践としては、月ごとの売上データに実際に触れてみることにしています。これまでは解説付きの資料に頼りがちで、問題点やその対策が本質的に理解できていなかったと感じます。売上の増減に影響を与えている要因を、自部門の活動と照らし合わせながら振り返り、今後の対策へとつなげていこうと思います。

クリティカルシンキング入門

データ分析の神髄を学ぶ: MECE活用法

情報をどう加工する? 情報を分解して考える際のポイントについて学びました。まず、情報を加工して新たなデータが得られないかを検討します。そして、情報の分解には複数の仮説を立て、一度分けた情報だけで判断せず、別の視点から再度分析を試みます。数字を見るだけではなく、グラフ化することで認識しづらかった数字の特徴が浮き彫りになることがあります。 分析時のMECEの重要性とは? 情報を分解するときには、まず全体を定義づけし、MECE(Mutually Exclusive, Collectively Exhaustive)を意識した切り口を見つけます。これにより、重複や漏れがない分析が可能になります。アナリティクス分析時にも、見たままのデータに頼らず、別の視点を意識して分析することが重要です。 過去データの活用法を知ろう コンテンツ制作の企画段階では、MECEを意識し、どの顧客に対してアプローチすべきかを判断します。次の施策を始める前には過去のデータを集計し、数値をさまざまな方向から分解して、過去の傾向を徹底分析します。チームに情報を共有する際には、グラフを用いて視覚的に分かりやすく説明する工夫が求められます。このように、決めつけを避け、別の分解方法が無いかを考えながら分析を進めることが肝要です。

クリティカルシンキング入門

データ分析で広がる新たな視点

データ分析の基本を押さえるには? データを分析する際には、全体を定義し、MECE(漏れなく、重複のない)を意識した仮説を立てることが重要です。これにより、さまざまな切り口でデータを見ることができ、効果的な分析が可能となります。 また、データをグラフ化することで、視覚的に分かりやすくなり、判断基準を明確にすることができます。ただし、与えられたデータだけで結論を出すのではなく、自分自身で手を動かして深く分析し、異なるデータから他の現象が存在しないか確認することも重要です。 新たな分析法をどう模索するか? 販売データの分析においては、毎月同じ切り口でデータを出している現状があるため、新たな切り口を検討し、どのようにMECEで考えていくべきかを模索したいです。提供された資料の確認の際にも、仮説を持ち、さらに分析を深めることで、他にない切り口を模索していきたいと考えています。 データに接するたびに、MECEが適切にできているか、他にどのような分析の切り口が考えられるのかをしっかり考えたいと思います。また、数字をグラフ化することで、よりわかりやすく情報を整理することの重要性を学びました。これにより、固定概念に囚われず、批判的な視点を持ちつつ柔軟なアプローチでデータに向き合っていきたいと感じています。

「分析 × 判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right