アカウンティング入門

企業の財務がわかるB/Sの魔法

貸借対照表の魅力は? 今週は、貸借対照表(B/S)を通して会社の財務状態を読み解く基本を学びました。特に、「資産=負債+純資産」という関係式が、企業がどのようにお金を使い、どこから資金を調達しているかを明確に示す点が印象的でした。 資産と負債のバランスは? 資産は、設備や在庫、現金など、会社が具体的にどのような財産を保有しているかを示します。一方、負債は、将来的に返済が必要な借入金や買掛金を意味し、純資産は返済義務のない自己資本、すなわち出資や蓄積された利益を表しています。この三者のバランスを見ることで、企業の安全性や自立性を判断できることが分かりました。 財務の実際は安定? 実際のビジネスでは、例えば自社の貸借対照表を確認した際に、負債比率が高いと将来の返済に対するリスクや資金繰りへの影響が懸念され、逆に純資産が充実している場合は、外部環境の変化にも柔軟に対応できる安定感があるといえます。これにより、財務数値の背景にある企業の状況を掘り下げる視点を養うことができました。 信用調査の効果は? さらに、営業アシスタントとして取引先の信用調査や社内報告を行う際、B/Sから企業の財務体質を把握するスキルは非常に有用です。具体的には、月に一社の決算書を読み、資産・負債・純資産のバランスに注目した簡単な分析メモを作成する習慣を身につけることで、業務に直結する知見が深まると感じました。

アカウンティング入門

財務諸表の読み方でビジネス力を向上

貸借対照表で何が分かる? 貸借対照表について学んだことで、資金の調達やそのストックの方法についてイメージすることができました。表や実際の企業の例を使って理解を深めることができ、貸借対照表と損益計算書の関係性が明確になりました。特に、純利益と純資産がリンクしている点が印象的でした。 借金はリスクか機会か? また、ケーススタディを通じて、借金という一見リスクに見える行為が、実際には事業を成功させる上で重要な要素になることを学びました。例えば、カフェの事例では、自己資金だけで開業した場合、コンセプトである非日常感が失われ、結果として売上が落ち、倒産のリスクが高まる可能性があることが具体的に理解できました。 競合分析に財務諸表をどう活用する? この知識を競合分析に活用したいと思います。具体的には、内資系や外資系、一般社団法人のような競合の貸借対照表を見て、企業の体力や戦略を予測することができると考えています。売上やシェアが好調そうな企業でも、実際には財務的に厳しい状況にあるかもしれません。 競合企業の財務諸表を各社のホームページからダウンロードして、基本的な資産、負債、純利益を見ながら仮説を立てます。さらに、損益計算書もチェックし、どれだけの利益が純利益に組み込まれているか、または寄付などで資産化しているかを確認することで、自社の財務的安定性を客観的に判断したいと考えています。

戦略思考入門

ビジネス成功の鍵は現状把握とフレームワーク活用

他社との差別化に課題はある? 事業会社に携わっていた際、他社との差別化について意識していましたが、それがかなり主観的だったかもしれないと反省しています。「こうしたい」という思いと、実現可能なことや顧客から求められているもののギャップを埋めなければ、ビジネスとして成り立ちません。 フレームワークの活用で何が変わる? 各種のフレームワークは客観的な判断に有用ですが、顧客の設定(もしくは創造)がすべての軸となることが深く理解できました。3C、SWOT、バリューチェーン、VRIO分析を用いて、現実的かつ需要に適い、持続可能な差別化を打ち出すことに役立てていきたいと思います。 中古車販売で差別化するには? 中古車販売事業は競合も多く、とてもありふれた商売ですが、ポーターの3つの基本戦略が非常にわかりやすく当てはめられます。他社との比較が容易にでき、自社の差別化戦略に繋げられそうです。 フレームワークをどう実践する? 学んだフレームワークはとにかく使ってみなければスキルとして定着しないし、良し悪しの判断もできません。フレームワーク自体に良し悪しがあるわけではないでしょうが、合う合わないの問題はあるかと思います。 現状把握で安全なスタートを! どの方向へ向かうにしても、現在位置を正確に把握することで安全確実な一歩を踏み出せると考えます。まずは冷静な現状把握が必要です。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

戦略思考入門

多様な意見を取り入れつつ、自社の価値観を貫く方法

柔軟な思考をどう育む? 戦略を立てる上では、思考様式やツール(フレームワーク)の知識を基礎としながらも、多くの知識と他者の多様な考えに触れることで得られる柔軟な思考や発想が重要だという点が印象的でした。しかし、一方で、それらの多くの知識が逆に足かせとなったり、他者の考え方から悪影響を受けないように、自社の経営方針や価値観を判断の拠り所とすることも常に意識する必要があると感じました。 情報収集と分析のポイントは? 今週の学習内容とは少し異なりますが、事業計画の策定においては、できる限り多くの情報を収集し分析することが求められます。その際、「①自己の都合の良いように解釈したり、拡大解釈しない」ということと、情報や分析結果を基に戦略を立案する際に「②自社のMVV(ミッション・ビジョン・バリュー)との整合を取る」ということが重要だと思います。 まず、①については、自身の出した結論に対する論理を明文化して、他者に意見を求めるという流れを基本的なプロセスとして進めることが肝要です。 MVVと戦略の整合性を保つには? 次に、②については、MVVを日頃から目に触れる場所に掲示したり、作成するドキュメントに盛り込むことが有効です。また、レビューチェックシートにチェック項目として設けるのも良い方法かもしれません。これにより、常に自社の価値観や目標を意識した戦略策定が可能となります。

マーケティング入門

タイミングが鍵!市場成功の切り札

市場反応はどう見る? 今回の学びを通して、製品やサービスが市場で受け入れられるかどうかは、完成度の高さだけで決まるわけではないという点を改めて認識しました。たとえ市場分析を十分に行い、自信を持って開発したものであっても、タイミングやネーミング、見せ方などの要素により、爆発的なヒットにつながる場合もあれば、期待に反して市場からの反応が得られないケースもあると感じています。 普及要件はどう見る? このような不確実性がはらむ市場環境の中で、「イノベーションの普及要件」といったフレームワークは、製品やサービスの受容性を客観的に評価し、改善の方向性を検討するための有用な手がかりとなると確信しました。 売れる理由は何? また、私が担当している製品は、今回のケースのように明確かつシンプルにターゲティングできるものばかりではありません。それでも、類似商品の販売状況から「なぜ売れているのか」「なぜ売れていないのか」という視点で日々考察を深めることが非常に重要であると感じています。 市場動向はどう捉える? 今後は、日常業務においても意識的に他社製品や市場動向を分析し、自社製品の訴求ポイントや改善策に活かしていきたいと考えています。そして、ヒットしなかった商品について、見直すべきか方向転換すべきかの判断基準をどのように持つかという点も、今後の大切な学びのテーマにしたいと思います。

データ・アナリティクス入門

問いを絞れば未来が見える

イシューの本質は? まず、データに飛びつく前に、何に対して答えを出すのかという根本的な課題―イシュー―を明確に整理することが大切です。イシューは、Yes/Noといった二つの選択肢程度に絞ることで、分析がしやすくなります。 数値比較の意味は? 次に、単一の数値だけでは状況が判断しにくいため、2つ以上の数値を用いた比較分析の重要性が浮き彫りになります。この手法により、数値同士の関係を明確に理解し、正しい判断を導き出すことができます。 業務シーンはどう見る? 業務シーンでは、キャパシティプランニング、リリース影響の判定、障害対応時の原因切り分けなど、様々な場面でこの考え方が活用されています。特にキャパシティプランニングの場合、ただ「リソースは足りているか?」と漠然と問いかけるのではなく、「現在の増加ペースが続いたとして、3ヶ月後にもリソースが十分確保できるか?(Yes/No)」と問いを明確にすることが求められます。 予測と対策はどうする? 具体的な取り組みとしては、過去のトレンドから3ヶ月後の予測使用量を算出し、実際に利用可能な物理的リソースの上限値と比較します。もし予測値が上限に近づく、または超える場合はリソースの増強が必要であると判断し、迅速な対応を実行していくこととなります。このプロセスを繰り返し実践することで、業務全体の質の向上につながっています。

クリティカルシンキング入門

ナノ単科で見つけた本当の学び

本当のイシューは? 現実に直面するさまざまな事象に対して、何が本当のイシューなのかを常に意識することが重要です。事実やデータに基づいた分析を経て、まずは冷静になり、すぐに安易な手法に飛び付くのではなく、マクロとミクロの両面から視座を高く保って俯瞰することが求められます。これにより、実現したい「ありたき姿」を達成するために足枷となっているボトルネックを見出し、それを明確にして対処することで、本質的な課題解決に繋げられると考えています。 根本原因は何? また、現場で発生する多様な事象に向き合う際には、その背後にある根本原因を追究することが不可欠です。冷静な判断をもとに何が原因となっているのか、なぜそのような結果に至ったのかを繰り返し問うことで、問題の本質に辿り着く思考方法が形成されます。安易な打ち手に飛び付くのではなく、視座を高く保ち、一歩引いて現状を分析する姿勢が、課題解決の大きな鍵となります。 伝え方はどうすべき? さらに、企画提案資料やエビデンスの提示においても、このアプローチは非常に有効です。例えば、ピラミッドストラクチャーなどのフレームワークを用いることで、聞き手にとって分かりやすい構成や表現が実現でき、事実データの適切な見せ方にも工夫を凝らすことが可能となります。こうした工夫により、無駄な手戻りを防ぎ、効果的な業務推進へとつなげることが期待できます。

データ・アナリティクス入門

論理と実践で掴む成長

どうして論理で考える? 問題解決にあたっては、「what」「where」「why」「how」という順序に沿い、論理的な流れを重視することが大切です。各段階で仮説を立て、安易な原因の特定や根拠のない解決策にならないよう意識しています。 仮説の深掘り大事? また、仮説設定や要素の分解の際は、必要に応じて3C(Customer/Competitor/Company)や4P(Product/Price/Place/Promotion)といった手法を用い、偏らない分析・比較を心がけています。これにより、より具体的で納得できる解決策を導き出すことが可能になります。 どうやって迅速判断? 日々の業務では、あらゆる意思決定が求められる中、根拠と基準を明確にし、迅速に判断するスキルが不可欠です。社内外で目にする数字やデータに違和感や異常を感じた際は、すぐに原因分析を行い、問題解決に向けた対策に着手することが求められています。特に、決算報告や業績予想の資料作成、報告時には、正確な原因把握と的確な対策が必要となります。 資格取得どう進む? そのため、改めて決算書の読み方や作成方法を学ぶ必要性を感じています。既に購入している教科書や問題集に着手し、日商簿記の資格取得を目標に、継続的に学習を進めています。帰任後すぐに資格を取得するという目標を掲げ、計画的に勉強を進めていく予定です。

データ・アナリティクス入門

課題発見!データが導くヒント

データ分析は何に使う? まず、データ分析は単なる数値の羅列に意味を見出すのではなく、特定の問題を解決するために行うものです。いきなりあらゆるデータを収集しても、どの部分に着目すべきかがわからず、効果的な結果に結びつきにくいでしょう。したがって、まずは問題を明確に定義し、大まかな分析から始め、論理ツリーやフローチャートなどを活用してデータを分解します。この際、解決策に結びつくような意味のある分け方を意識し、比較対象を明確にすることが大切です。 問題解決はどう進む? また、問題解決のプロセスにおいては、「何が問題か(What)」、「どこに原因があるか(Where)」、「なぜその原因が生じたのか(Why)」、「どうすれば解決できるか(How)」という4つのステップに沿って、仮説をいくつか立てながら、検証を進めることが求められます。分析の際は、複数の仮説を網羅的に洗い出し、分析フレームワーク(3Cや4P、5フォース、PESTなど)を活用するのが有効です。例えば、ある期間の売上減少については、内部要因(販売店の比率、広告費、性年代別の購入者率、リピート率など)と外部要因(気温、感染症の流行、訪日外国人の数など)の双方を収集・比較し、ギャップが大きい部分に絞って深堀りを行います。最終的には、複数の解決策を挙げ、判断軸に基づいて最適な対策を選定するという流れになります。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。
AIコーチング導線バナー

「分析 × 判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right