データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

クリティカルシンキング入門

データ分析で新発見!視野を広げる方法

データの意外な発見は? 数字を分析する際、単に数値を眺めるだけでなく、以下のような手法を用いることで新しい発見があることを理解しました。まず、グラフ化したりパーセントに変換することが有効です。また、データのグルーピングも年齢帯を変えるなどの工夫が必要です。さらに、複数の切り口から分析し、結果を疑いながら挑み続けることが重要です。 新たな視点は現実? このようなマインドを持つことで、特徴が見えなかったということ自体が「新しい発見」であると理解することができます。そして、新たな切り口が必要だと気づくこともできます。したがって、様々な方法でデータを分解し、分析していくことが脳の考え方をポジティブに変える重要なポイントだと学びました。 数の理由は何だ? 具体的には、「数」を扱う場面が多いため、データを様々な方法で分解し、それぞれの要因を特定していきたいと考えています。例えば、来場者が増えた原因や、顧客が不満を持つプロセス、売上向上の要因を詳細に分析したいと思っています。 多角的視点は十分? 今週中に、現在行っている来場者数の分析を一度見直し、見えているものだけで十分なのか、または他に見えてくるものがあるのかを検討したいと考えています。現時点では、業種や職種、来場日時といった切り口で分析していますが、事前登録の時期やセミナーの申し込み状況、WEBアクセスの頻度など、他にも試すべき切り口が思い浮かぶので、それらを用いて分析を試みる予定です。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

仮説で見つける新たな視界

どうして複数仮説が必要? 結論を先に決めてしまわず、はじめから複数の仮説を立てることが大切です。それぞれの仮説に網羅性を持たせ、偏りのない検証を心がける必要があります。 どのフレームが使える? 仮説を立てる際には、3Cや4Pなどのマーケティングフレームワークを活用することが有効です。他のビジネスフレームワークも使いやすさを考慮して試すと良いでしょう。さらに、仮説を検証するためのデータが恣意的になっていないか注意することが重要です。 実績の要因は何? 実績に対して要因を探る際、ベテランの経験則に基づく仮説が採用されやすい傾向があります。しかし、対案を立案しデータによる検証を実施することで、本当にその仮説が正しいのか確認する必要があります。また、仮説を証明するためだけのデータに依拠しすぎないよう注意してください。 急な依頼はどう考える? たとえば、上司から急遽、ある実績に対して1つの仮説だけを検証するよう依頼されたケースがありました。その際、他の分析結果ではその仮説の寄与度が低いことが示されており、また分析結果が活かせるのは1年後という説明から、急いで1つの仮説だけを検証する必要はないと理解してもらいました。 理想と現実は? このように、上司がある実績について理想的な状況を望んでいる場合でも、実際には複数の説明変数が影響していると考えられます。したがって、必要なデータを揃えて十分な分析・検証を行うことが求められます。

クリティカルシンキング入門

新たな視点で広がる思考の旅

思考の癖はなぜ? 人はそれぞれ思考のしやすさや癖を持っており、それがアウトプットに偏りをもたらします。批判的に考える際、その主語は常に自分であるべきです。そして、客観的に思考できるようになるには、他者からのフィードバックや意見交換を通じて自己の思考の偏りを理解することが重要です。そのため、自由に発想するブレーンストーミングは、問題解決の過程で非常に重要なプロセスです。 会議の進め方は? 部署の会議では、まずプロセスに重点を置くことが大切です。会議をリードする際には、他者の意見を受け入れるという姿勢が大切で、結論ありきで話を聞かないように心がけるべきです。また、自分の業務においても、他人の意見を自分の期待する結論に当てはめようとせずに、自分の常識とは異なる視点に関心を持つことを意識しました。 打ち手の理由は? 部署の会議で打ち手から始める場合、その打ち手がなぜ出てきたのかを確認するようにしています。上司からの指示を鵜呑みにするのではなく、上司が考えたプロセスに賛同できるかどうかを前提に話を聞くことが重要です。 会議でどう意見交換? 自分がリードする会議では、会議のゴールをしっかりと把握した上で、多様な意見を述べられる環境を作ることを心がけています。また、自分の業務では、予期しない論調になった場合、その理由や根拠を丁寧に探り出すことで新たな着想を得たり、自分の思考の癖をより深く理解していきたいと考えています。

戦略思考入門

リソース配分の悩みと振り返りの重要性

業務効率化はどう進める? 業務の効率化を考える際、メリットの少ない工程を排除したり、手作業を自動化することは比較的容易である。実際にこれまで幾度となく実践してきた経験がある。しかし、限られたリソースで重要度が拮抗している2つの戦略や業務のうち、どちらかを選ぶ場面では、それほど簡単とは言えない。 選択サイクルの重要性とは? それぞれの戦略や業務にかかるコストと得られる効果(売上や時間短縮)をできる限り定量化して判断するのが一般的だ。しかし、選ばなかった方が後に良い選択だったのではないかという懸念は拭えない。そのため、「選択」は一度きりの行為ではなく、実行後に関係者で振り返り、次に繋げていくサイクルが重要であると感じた。 今後の人事戦略の考え方 次期中期経営計画における人事戦略を立案する際、以下の3つのポイントを念頭に置いて、チームでこれまでの活動を振り返り、今後の戦略やアクションの取捨選択を行いたい。 1. **捨てる方が応募者のメリットになること** - 応募者の立場で再考し、他社の手法なども参考にする。 2. **惰性に流されないこと** - 従来のやり方や慣例を疑い、無駄の排除や効率化、別のアプローチの検討を行う。 3. **餅は餅屋に任せること** - 分業化を検討し、社内での分業化や外部委託、もしくは専門家の意見を取り入れる。 これらの観点を基に、効果的な戦略の取捨選択を進めていきたい。

データ・アナリティクス入門

仮説構築で見つける問題解決の鍵

問題解決の基本は何? 問題解決において、What(何が問題か)、Where(どこに問題があるか)、Why(なぜそうなのか)、How(どのような解決策を取るか)の順で進めることが基本であると学びました。また、仮説の構築において、自身の考えの幅を広げるためのフレームワークとして、3C分析や4P分析が有効であることを知りました。 仮説立案のポイントは? 仮説を立てる際には、複数の仮説を立てることと仮説の網羅性が重要です。さらに、仮説には結論の仮説と問題解決の仮説があり、それぞれの問題に対して適切に使い分けることが大切だと理解しました。 フレームワークの活用法は? 特に自身の仕事において、仮説を立てる際のフレームワークが大変有用だと感じました。これまでは人員不足といった問題に対して自身の思いつきのみに頼り、解決策を立てていましたが、今後は3C分析や4P分析といったフレームワークを活用し、より網羅性のある仮説を立てられるようにしたいです。 人員不足問題にどう対応する? 具体的には、人員不足という問題に対して、どこに問題があり原因は何かを仮説を立てて探りたいと考えています。仮説を立てる際には3C分析を活用し、求職者側の視点、競合の動き、自社の問題(雇用条件、福利厚生など)から仮説を立ててみます。その結果、自社に問題があるとなれば、4P分析に進み、さらに深堀りして問題を特定し、具体的な対策を立てるようにしていきたいです。

戦略思考入門

戦略思考で紡ぐ新たな挑戦

全体戦略をどう考える? 戦略的思考とは、論理的なシナリオを構築することであると捉えています。まずは全体を俯瞰し、外部環境を広く観察する中で、市場、競合、顧客と自分自身を比較して、何を実現しようとしているのか、大きな流れを把握できました。その中で、どの領域に注力し、どのように差別化を図ることで最短・最速で目標に到達するかが明確になりました。一方、各種フレームワークを用いてシナリオを組み立てる際に、それぞれの整合性をとる必要があるため、習熟するまでには時間がかかると感じています。 自分の立ち位置は? また、業界や企業を自分自身のものとして捉え、言語化することで、フレームワークを自分のツールにしていきたいと考えています。 新規企画の挑戦は? 今回の学びの経験を活かし、医療・ヘルスケア領域での新規プロジェクト企画に挑戦したいと思います。エネルギー領域の技術調査では多くのデータが蓄積されている一方で、新たなプロジェクト領域については未知の部分が多く、先人の知見を参考にしながらフレームワークを活用し、抜け漏れのない計画を進める所存です。 実行計画はどう進む? 具体的なスケジュールとしては、まず部下とフレームワークの知識を共有して調整を図り(~5月末)、その後6月上旬に新規プロジェクトの大枠となるシナリオを作成します。さらに、6月下旬には不足している情報をヒアリングや調査で補い、7月上旬までに事業計画書に反映させる予定です。

リーダーシップ・キャリアビジョン入門

リーダーシップスタイルの使い分け術

リーダーシップの4つのスタイルとは? 効果的なリーダーシップ行動について学びました。リーダーシップのスタイルとして、指示型、参加型、支援型、達成志向型の4つがあります。この4つのスタイルについては、どのような仕事や相手に対しても、それぞれ使い分けることが必要です。しかし、スタイルを意識しすぎるのではなく、仕事や相手に注目して、その状況に適したリーダーシップの行動を自分なりにイメージすることが重要です。このイメージを繰り返すことで、自分なりのリーダーシップの型を形成していくことが大切です。 行動を振り返る意義は? それぞれの仕事や相手に応じて、状況をよく考えた上で行動を決定し、実際に試みてみることをお勧めします。そして、しばらくの間は意識的にその行動を振り返ることが求められます。 具体的な仕事ごとの対応方法は? 具体的な仕事についてですが、採用、研修、運営に関しては現時点では支援型で対応を進め、企画については参加型を、DXやFSには指示型を採用しています。特に、DXと採用に関して同じ相手とのコミュニケーションが今週予定されているため、自分の中で意識的に違いを持ちながら物事を進めてみたいと思います。 自己分析で何が変わる? スタッフと対話する際には、どんな相手で、どんな仕事を行うのかを意識し、行動を変えていくことが重要です。また、これまでの自分の行動からどのように変わったのかを自己分析することも含まれます。

「それぞれ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right