データ・アナリティクス入門

A/Bテストで見えた学びのヒント

目的と仮説は合っていますか? A/Bテストを実施する際は、まず目的や仮説を明確にし、検証項目をしっかりと設定することが重要です。仮説検証を繰り返すことで、どの施策が効果的かを見極めやすくなります。また、テストは1要素ずつに絞り、同一の期間で実施することで、結果の比較が正確に行えます。 セグメント選定の視点は? さらに、対象とするセグメントの軸や狙うべきターゲットは、単に機械的な判断で決めるものではありません。多様な視点を取り入れてバランスよく検討することが求められます。 事例の適用方法は正しい? 具体的な事例として、来週から展示会に向けた来場促進やセミナー申込促進のメール配信を予定している場合、各配信ごとにA/Bテストを行い、前年までの配信データを整理した上で効果を比較する方法が考えられます。また、現在実施している販促キャンペーンのメルマガにおいてもA/Bテストを導入することで、最適な配信内容を模索することができます。 テスト結果の比較はどう考える? たとえば、優良顧客を対象にグループ分けをしてテストを行い、結果が良かった方の内容を全体に活用して前回の配信内容との差を確認する方法があります。一方で、以前「今だけ送料無料」をアピールした際に期待した効果が得られなかった場合は、内容を再精査し、異なるパターンでA/Bテストを実施して比較することも有効です。

クリティカルシンキング入門

分析力で未来を切り拓く!

数字分析の基本とは? 数字を使った分析を行う際には、目的をしっかり意識し、そのうえで要素を適切に分解することが重要です。要素の分け方を工夫しないと、誤った結論に至る可能性があります。こうした分析においては、複数の角度から考えることが求められ、MECEの手法が有用です。 切り分けの効果的手法 「モレなくダブりなく」を意識して、ある要素を切り分けることが重要です。まずは全体を定義し、その後に目的に合った切り口で分解することで、問題点を明確にできます。分解の手法には、「階層分解」(~である/~でないに区分け)、「変数分解」(例えば、売上を単価×数量で分ける)、「プロセス分解」(どのフェーズやプロセスに問題があるかを見極める)が含まれます。 事業計画で何を意識すべき? 事業計画を立てる際には、売上の視点と組織育成の視点それぞれに対して、目的に応じた切り口で要素を分解し、それを計画の立案に活用したいと考えています。また、個々のプロジェクトに対しても、売上や要員育成の観点から目標を設定し、その上でメンバーへの指導に役立てたいと感じました。 今後の見直しポイントは? 来季の事業計画については、組織体制を含めて再度見直しを行う予定です。予算と育成の観点から今後必要と思われる要素をMECEなどを活用して洗い出し、実現可能性が高く成長が見込める提案を立案できるように努めたいと思います。

リーダーシップ・キャリアビジョン入門

多様な視点でリーダー像を再考する旅

新たな学びは感じる? 社内では得られない新しい学びを実感しました。特に日々の業務に関連する目標設定などに加え、普段は考える機会が少ないキャリアアンカーやキャリアサバイバルについても取り組めたことが大きな価値でした。また、多様な方と意見を交わしながら考えるグループワークは、大変刺激的であり、学ぶモチベーションを高めるのにも役立ちました。 対話で信頼築ける? 今後も変化していきそうな理想のリーダー像ですが、対話を通じて信頼を築き、エンパワーメントを促進するという基本的な部分は変わらないでしょう。リーダーとしての明確な役職がなくても、人々との対話を積極的に行いたいです。メンバーはもちろん、業務上関わる部署内の方々とも、自社や顧客の方々と広くコミュニケーションを図るつもりです。この際には、一方的に伝えるのではなく、相手自身に語らせる手法を採り、相手を理解しようとする姿勢を持って信頼関係を築いていきたいです。 改善のヒントは? できなかったことや不安、課題といったマイナス面に注意が向きがちですが、できたことやさらに改善できること、良かったことに意識を向けていきたいと思います。自分の話をする際も、不安や課題が話題に出がちですが、そこに共感を示すことが大事だと感じています。また、期待と現実のギャップを定期的に確認し、一緒に改善策を考え、本人からの意見を引き出すことを意識したいと思います。

クリティカルシンキング入門

新しい視点で業界の常識を打破する方法

なぜ思考を制約するのか? 人間は「考えやすいこと」や「考えたいこと」を優先して考えてしまう傾向があります。自由に発想できるにもかかわらず、無意識に思考を制約してしまうことがあるのです。クリティカルシンキングにおいて、自分の思考をチェックする「もう一人の自分」を育てることが重要です。理解していても、発想の「制約」や「偏り」は避けられません。それを防ぐためには「頭の使い方」を知っておくことが必要です。クリティカルシンキングはまさにその「頭の使い方」の土台を築くものです。 固定観念をどう打破する? 私の周りでも長く業界にいる人が多いのですが、新しい視点を考える際に、業界の固定概念に縛られてしまう人が多いと感じます。それでは真の新しい発想とは言えません。そうした固定概念に対する認識を改めさせられました。今後、新たな業界への進出も見込んでいるため、自分の思考能力をさらに磨いていきたいと考えています。 思考を深める鍵は何? 業務の移管、AIを用いた効率化、そしてプレゼンテーションといった分野で、スペースを持ち考えをまとめてから行動に移すことが大切です。その際、本当にそれが最善かどうかを何度も考え、決定した後も常に自問自答を繰り返します。また、自分だけの考えにとどまらず、他者の意見を収集して思考の幅を広げることが重要です。相手が理解しやすい言葉選びや表現を常に意識していきたいと思います。

データ・アナリティクス入門

データが映す学びの真実

比較検証で何が分かる? データ分析の魅力は、データを漏れなく比較することで仮説を立て、現状を正確に把握できる点にあります。理想の状態が明確になると、実行可能な改善策が見えてくるため、比較検証はとても有効です。また、ヒストグラムや散布図を用いることで、データのばらつきを視覚的に把握でき、適切な分解や分類により分析の精度が向上します。これにより、異なる視点から問題点や改善案を検討できる点が非常に魅力的だと感じました。 実務でどう活かす? 学んだフレームワークを実務で活用するため、過去のデータ分析を再実施し、問題点と改善策を明確にすることを試みました。現状把握には5W1Hを用いた定量的な分析を行い、現場でのヒアリングと合わせることで、実際のデータとのズレを確認しながら解決策を検討しています。これまでグラフを活用してきましたが、ヒストグラムや散布図の導入は初めての試みで、今後さらに活用していきたいと考えています。 効果的な選定法は? 効果的なデータ分析には、収集時に重要な項目を明確にし、適切なデータを選定することが欠かせません。定期的な可視化によりデータの傾向を把握し、その結果を共有することで継続的な改善が図れます。また、What、Where、Why、Howといったステップを守ることで、思考の幅が広がり、仮説とデータに基づく検証を通してより実践的な分析が可能になると実感しました。

データ・アナリティクス入門

ギャップに挑む学びの一歩

問題の本質をどう捉える? 問題解決プロセスについて学んだ内容は、まず「ありたい姿」と現状を比較し、そこに存在するギャップに着目する点から始まります。その上で、問題を構成する要素に分解し、ロジックツリーを用いながら要素間の関係を整理していく方法を学びました。ここでは、MECEの原則を意識しながら、WHAT、WHERE、WHY、HOWといった各視点で問題を詳細に捉えていくプロセスが重要です。特に、どこに問題が潜んでいるか(WHERE)の特定が解決への大きな手がかりとなります。 広告関連の要因は? たとえば、広告効果を測るデータで前回のCPと比較し、数値に大きな乖離が見られる場合、このプロセスは有効に働きます。その際には、広告以外の宣伝活動があったか、テレビで取り上げられたか、他社が類似のCMを始めたか、または在庫の問題がなかったかなど、さまざまな要因を洗い出して、どうすれば問題が解決できるかを検討することが求められます。 部門へ依頼する理由は? 現状では、業務スコープの中でデータが正しく取り込まれ、出力される段階で分析が終了してしまっていることが多く、結果としてその分析作業は別の部門に依頼しているケースが見受けられます。今後は、アナリストとしての視点を強化し、データを直接営業チームに提供できるよう、問題解決プロセス全体に対する理解と取り組みをさらに深めていきたいと感じました。

クリティカルシンキング入門

クリティカル・シンキングで視野を広げよう

クリティカル思考は何? クリティカル・シンキングは、人、物、金に関するスキルを学ぶ上で非常に重要な基盤となります。このスキルの位置付けを知ることで、その重要性を改めて実感しました。 演習で何に気づく? 「ドラッグストア」を題材とした演習を通じ、無意識に自分の考えを制約していたことに気づきました。また、クリティカル・シンキングの対象は自分自身であり、自分の思考を定期的にチェックする必要性も感じました。制約や偏りを起こさないようにするためには、視点、視座、視野を意識することが重要です。これらを意識することは、直感的に思考することが多かった以前よりも、今後の業務で大いに役立つと感じています。 業務でどう活かす? 例えば、部門の広報担当として、部門の取り組みや課題を説明する文章を作成する際、会社案内や統合報告書、さらに格付機関への報告など、様々な場面でこのスキルが活用できます。また、部門の企画担当として来期の業務計画を策定する際、パワーポイントで資料を作成し経営会議で報告する際にも非常に有用です。 客観的視点はなぜ? 自分の作成した文章やパワーポイント資料に対して、客観的な視点を持つことが重要です。視点、視座、視野を意識し、誰にどの程度の情報量で伝えるべきかを考える習慣を身につけることが効果的です。これにより、読者や聞き手に情報を効果的に伝えることができるようになります。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

クリティカルシンキング入門

未来を創るオンライン学習体験

自分の考えに疑問は? 情報を慎重に読み取り、形式や流れにとらわれることなく、最初に出した自分の回答に疑いをかけることが重要です。特に、どこに重点を置くべきかによってアプローチ方法が異なることがあります。一つの点にだけ集中してしまうと見落としが発生するため、広い視野を持ち、多様な視点からゼロベースで考えることが求められます。 どこを改善すべき? 新しいコンテンツの開発や新オペレーションの考案に際して、前回のコンテンツ実施時のアンケートを分析し、次回への改善点を見つけます。この際、見えたものをそのまま受け取るのではなく、多様な視点から分析を行い、売上を伸ばすためにどこに注目すべきかを考えます。お客様の声や運営スタイル、人件費など、幅広い視点からの観察と熟考がアプローチ方法に影響を及ぼします。 どんなデータに注目? これまで、グラフ上で下回っている部分に注目して改善を試みてきましたが、さらなる成長の可能性にも目を向けていきたいと考えています。異なる特性を持つデータを比較することで、新たな発見が生まれる可能性があるため、目の前のデータだけでなく、それに関連するデータにも焦点を当て、イシューを特定することが求められます。また、様々な視点からの意見が新たな気づきをもたらすため、自分一人で考えるのではなく、ミーティングやデイリーの引継ぎ時間を活用して意見を共有し合うようにしたいです。

クリティカルシンキング入門

思考の枠を超える方法を学ぶ旅

制約された思考からの脱却は? 人は誰しも無意識に制約された思考に陥りやすく、自分が考えやすいように考えてしまう傾向があると理解しました。制約や偏りを避けるためには、頭の使い方を知っておく必要があると感じましたが、具体的な方法についてはまだ説明ができません。今後の学びで納得できる形にしたいと思います。 今回、ライブ授業を受講できず動画での受講となりましたが、皆さんの意見を聞く中で、自分の思考がかなり凝り固まっていることに気づきました。少しずつでも柔軟にしていきたいと思います。 顧客視点を意識するためには? よく耳にする「顧客視点」「顧客ニーズ」「顧客への差別化」など、顧客に対する付加価値を考える際には、偏った思考にならないように3つの視点を意識し、社内での提案作成に役立てたいです。また、ディスカッションやアウトプットを行い、フィードバックをもらうことで客観的な思考を定着させるようにしていきたいです。 多角的視点で目的を分析するには? さらに、目的を明確にするために「なぜなぜ分析(ロジックツリー)」を行い、一つの分解で終わらせるのではなく、多角的視点で分析していきます。目的が明確になったら、次には主張したいことをまとめ、その根拠となる情報を紐づけて説得力のある提案を作成したいです。提案内容を説明する際も、相手に理解してもらえることを意識することが重要だと感じました。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

データ・アナリティクス入門

AIとフレームワークで広がる問題解決の可能性

AIをどのように活用する? まず、難解な問題解決に向けて、AIを積極的に活用することの重要性を学びました。問題の解決策を探る際、AIの力を借りて多様なアプローチを試みることで、解決の糸口を見つけることができました。 フレームワークの活用法は? 次に、広がった可能性の中から決断を下すのは自分自身ですが、その際にフレームワークを活用することです。より的確な判断を下すために、フレームワークとAIを組み合わせて問題解決を進める方法を学びました。 曖昧な質問でどう思考を広げる? 最後に、従業員に疑問や課題を投げかける際、あえて曖昧な質問を意識的に行うことで思考の幅を広げることです。視点を広げるために曖昧さを残した質問を活用し、従業員の自主的な思考を促進することが効果的であると感じました。 加えて、諦めずに問題と向き合い続ける姿勢を持つことの大切さも再認識しました。特に経営データの分析においては、簡単な答えが見つかる問題は存在しないと思われます。その中で、仮説を繰り返し立てて検証し続けることでしか、問題解決には到達できないと考えました。 持続するために必要なメンタリティは? 諦めない姿勢を持ち続けるために、AIも活用しつつ、自分自身のメンタリティを鍛えることが重要です。問題と向き合い続け、逃げず、他責にせず、必ず解決できると信じて立ち向かう意識を持ち続けたいと思います。

「視点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right