データ・アナリティクス入門

数字に秘めた改善の真実

平均と中央値はどう違う? 平均は全体の傾向を示す便利な指標ですが、外れ値の影響を受けやすいため、必ずしもデータの中心を正確に表しているわけではないと再認識しました。一方、中央値はデータを並べたときの中央の値であり、外れ値の影響が少ないため、偏りのあるデータに対して有効だと感じています。また、標準偏差を活用することで、同じ平均値でもデータのばらつきに違いがあることを明確に把握できる点が印象に残りました。 営業改善、ポイントは? 営業店の業務改善においても、代表値を活用する意義を学びました。具体的には、各店舗の業務処理時間を平均と中央値で比較し、処理時間が極端に長い業務がないかを確認することで、改善策の提案につなげる方法が効果的です。さらに、各営業店ごとの業務プロセスのばらつきを標準偏差で表現し、オペレーションの違いを把握する取り組みが有用であると考えています。 業務負荷の見極めは? また、ヒストグラムなどを用いて業務負荷の高い部分を特定し、改善の優先順位を決める手法にも触れ、業務効率化の進捗をグラフでフィードバックすることで、改善効果を視覚的に伝える方法の重要性も実感しました。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

平均と中央値が紡ぐ成長ストーリー

なぜルールが必要? データを取り扱う際は、一定のルールに則り全体の目線をそろえることで、伝えたい内容が明確になります。そのため、データからメッセージや仮説を引き出す際には、適切な代表値を選択することが重要です。たとえば、平均値については、単純平均や幾何平均など計算法の違いを意識し、正確な表現を心がける必要があります。 どんな手法が有効? また、データのばらつきを示すには、関数的な手法を用いてビジュアル化する方法が効果的です。舞台の単月入場率を年間の数字に換算する場合、各月の値を単純に平均するのではなく、正確な情報を伝えるために公演数で重みづけした加重平均を用いると良いでしょう。さらに、チケット単価のばらつきにより生じる外れ値の可能性を考慮し、中央値も併せて検討することが求められます。 分析に新たな示唆は? 日々の分析においては、平均値だけに頼らず中央値の視点も取り入れることで、その乖離から新たな示唆が得られるかを考えることが大切です。数字の集計表としてまとめるだけでなく、ビジュアル化によって情報の具体性と理解しやすさを高め、平均という言葉の使い方にも注意を払う必要があります。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

クリティカルシンキング入門

伝える力で広がる未来

情報整理はどうする? データのまとめ方や見せ方は、相手への理解を促進する一方で、誤解の原因にもなり得ます。文章に強調を重ねすぎると冗長になり、結果として読みづらくなることもあります。また、文字の色ひとつでも読み手の印象が大きく変わるため、注意が必要です。大切なのは、個性を出すことではなく、一般的に理解しやすい論理的な文章や図解を構成できるかどうかです。 プレゼンはどう見極め? たとえば、パワーポイントを活用したプレゼンテーションや、エクセルを用いた報告・連絡・相談、メール文章作成など、さまざまな場面で役立つ内容だと感じました。どの場面でも、表現が誤解を生まないかどうかを常に意識することが重要です。何気ない色使いが、伝えたい内容と逆の理解を与える可能性もあるからです。 伝達内容は正確? まずは、自分が何を伝えたいのかを明確にすることが不可欠です。図やグラフ、文字の強調は、あくまで伝えたい内容を補強するための要素に過ぎません。完成したら、上司や同僚に確認してもらい、伝えたいことが正しく伝わっているかどうかをチェックすることが大切だと実感しました。

データ・アナリティクス入門

データ分析で成果を上げるコツは?

要因分析を効果的に進めるには? 要因分析の際には、プロセスを細かく分解して考えることが重要です。解決策を選ぶ際には、判断基準を設けることが必要で、例えばコストやスピードを基準に評価を行うと良いでしょう。 A/Bテストの活用法とは? 方法の効果を確かめる際には、A/Bテストという手法が有用です。A/Bテストでは、可能な限り条件を揃えて比較実験を行うことが大切です。要因分析時には、できるだけ細分化を行うことが求められます。すべての状況がわからない中でも、仮説を立てて細分化を試みると良いでしょう。 解決策選びの優先順位はどう決める? 解決策の選択においては、判断基準や優先順位を整理することが重要です。効率が良い方法やスピードを基準として評価することが望ましいです。報告資料を作成する際は、自分の中でステップを細分化して理解し、その上で優先順位を付けて表現することが大切です。 条件を揃えるポイントは? 判断基準は常に上司と擦り合わせながら進めるべきです。また、比較を行う際は、可能な限り条件を揃えることを意識すると良い結果が得られます。

データ・アナリティクス入門

データ分析ライブ授業で得た新たな視点と刺激

データ分析の全体像を学ぶ WEEK6までは「what→where→why→how」のステップを各フェーズごとに学んできましたが、ライブ授業において総復習として、一連のデータ分析を行いました。各フェーズで重要な点を再確認することができ、また受講者の考えも伺うことができたため、非常に刺激を受けました。フレームワークの適用場所やグラフの選定についても分かりやすく解説いただき、実際の活用イメージがつかめました。 例題分析で新たな視点を得るには? 今回のライブ授業では、例題のように属性ごとに分けて分析する場面もありました。「〇〇円以上買ったシニア」などといった二つの条件での比較は行っていませんでしたが、新たな切り口で分析できそうだと感じました。 経験を活かせる次のステップとは? 今後は社内のデータアナリスト研修に参加し、アウトプットに注力していきたいと考えています。ただやみくもに分析するのではなく、ストーリーを立てて分析することを意識します。分析力を高め、数値やフレームワーク、表現するグラフを適切に選べるよう、自己啓発に努めていきたいです。

データ・アナリティクス入門

目的が明日のヒントになる

問題点は何でしょう? 何が問題かを明確にし、結論のイメージを持ちながら取り組むことが大切だと感じました。何を解決したいのかを考えることで、目的に立ち返ることができるため、数字をどのようなグラフで表現するか悩む場面でも、考え方の整理が進みました。データ分析においては、仮説思考が基本であるとも実感しています。 プロジェクトの目的は? 業務改善プロジェクトに取り組む際には、まず目的の設定が不可欠です。進める中で何を解決したいのか、そして最終的な結論のイメージを持ちながら作業を進めたいと考えています。現状では、システムや運用の活用率といったデータが中心ですが、活用と非活用という単純な区分のみで目的に沿った分析が可能かどうか、再度検討する必要があるように思います。 誰にでも分かる目的は? 目的設定については、誰にでもすぐにイメージできるような分かりやすいものにすることが重要です。現在取り扱っているデータから新たな気づきが得られないか、また、ほかのデータを追加することで見えてくる可能性があるかどうかにも注目していきたいと思います。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

クリティカルシンキング入門

クリティカルシンキングで業務課題を解決する方法

繰り返し学ぶ重要性は? 本質的な問いの立て方を意識し続けることが重要です。ビジネススキルは繰り返して学習しないと身につきません。そのため、過去の学びを何度も反復し、確実に身につける必要があります。特にクリティカルシンキングは、あらゆるビジネススキルの基礎であり、重要な要素です。 クリティカルシンキングの活用法とは? 例えば、製造などで連続生産する際には、クリティカルシンキングを用いて課題を抽出します。そして、その課題に対して、3つの視点を用いながら解決方法をクリティカルシンキングで考えます。解決方法は、人々が求める視点で提示し、イシューを設定して筋道の立った考え方を構築し、軸がぶれないようにします。 効果的なデータ表現の工夫は? また、まとめたデータなどを図表で表現し、分かりやすくする工夫も必要です。課題を説明する際には、ポイント順に整理しながら説明することが大切です。相手がどのような情報を求めているかを考えながら整理し、まとめた情報を文章で表現することで、何が言いたいのかを自分自身で明確にすることが求められます。

データ・アナリティクス入門

見える数値が導く新たな発見

数値の見直しは? 昔から用いられている数字の指標は、単一の平均値で表現されることが多いため、別の数値の捉え方をすると、販売手法を変更した際に新たな発見や結論が導かれると感じました。 可視化の意義は? 最近はデータ量が増えたことで、可視化にあまり重点を置かなくなっていましたが、見えるものから得られる情報も、適宜プロセスに組み入れると有用だと思います。 評価視点を変える? 自分が現在行っているパフォーマンス指標についても、どの視点で実績を評価しているのかを意識し、他の数値の読み解き方が可能かどうか確認し、日々の業務に役立てたいと考えています。特に、これまで使用してこなかった幾何平均や中央値については、意識して活用するようにしたいです。 データ活用方法は? また、商品実績の追跡は頻繁に行っていますが、カスタマーデータの分析は十分ではなかったため、カスタマーデータを改めて商品実績の分析に生かすことで、より多くの情報が得られるのではないかと考え、本日学んだ内容を業務に活かしていく所存です。

クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

「データ × 表現」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right