データ・アナリティクス入門

3C×4Pで描く未来予想図

3C分析の魅力は? 仮説を考えるためのフレームワークについて学ぶ中で、まず3Cの分析が印象に残りました。事業を取り巻く環境を整理するために、顧客(市場)、競合、自社という観点から現状を捉えることが重要であると感じました。これにより、市場の拡大可能性や自社サービスの強み、顧客のニーズの充足度が明確になります。 4P戦略の効果は? 次に、4Pのフレームワークも非常に有益でした。製品やサービスの質、適正な価格設定、提供場所、販売促進の各要素が、顧客に対する訴求力を高める鍵となることを再確認しました。これらの要素をバランスよく整えることで、より効果的な経営戦略が実現できると実感しました。 仮説の意味は? さらに、仮説を持つことで、単なる問題解決に留まらず、未来への問題意識や事業への関心を持ち続けることができるという点も大きな収穫です。結論においても、現状の運用体制の変化に対してどのようなアプローチが必要か、将来的な成長の可能性について仮説を立て、それを日々の業務で検証していく姿勢が重要だと考えています。

データ・アナリティクス入門

ロジックツリーで問題解決の新視点を発見

ロジックツリーはなぜ必要? ロジックツリーの作り方について、層別分解と変数分解の二つの手法があることを学びました。それぞれの方法は、分析したいデータに応じて使い分けることが重要だと考えます。一般的には、MECEの概念に基づいて、漏れなく重複なくと考えがちですが、実際には問題特定や新たな発見を目的として、意味のある分類ができるように、様々な視点を持つことが重要だと感じました。 層別分解の効果は? あるプロジェクトでは、問題を特定する必要があるため、ロジックツリーを用いた層別分解によって、MECEを念頭に置きながら、どのような層別にするかを考え、問題特定や意味ある分類を目指したいと思います。 ギャップ埋めはどうする? まず、理想的な状態と現状の間にあるギャップを洗い出し、ロジックツリーの層別分解に当てはめることで、多角的な視点から分析を行いたいと考えています。そして、さまざまな層別で詳細に分解し、問題箇所を特定し、そのギャップをどのように埋めていくかについての提案を資料としてまとめたいと思います。

データ・アナリティクス入門

データ分析で役立つ具体的アプローチ

分析の流れをどう把握する? 分析とは、目的、仮説、問い、そしてデータ収集・加工を行うという流れをきちんと把握することが重要だと感じました。また、インパクト、ギャップ、トレンド、ばらつきなどの各因子を鑑みたうえで数値を見ていくことが必要であると理解しました。 代表値の注意点とは? 何かとすぐに飛びつきがちな代表値の中でも、特に単純平均値には注意が必要です。業務では、サイト流入数や売上など様々な数値を見る機会が多いため、一つの代表値だけでなく、多様な代表値を目的をもって算出したり、散らばりを意識した分析を行いたいと感じました。 データ収集のポイントは? 日次、週次、月次など期間を定めた上で、数値の意味を考えたデータ収集や分析を行うことが重要です。過去のデータを活用しながら自分なりの仮説を立て、今回学んだフロー(目的→仮説・問い→データ収集→検証)を実施していきたいです。また、インパクト(重み)、ギャップ(差異)、ばらつき(分布)といった視点を意識しながら、数値の意味を考えていきたいと思います。

データ・アナリティクス入門

数値分析で掴む学びの一歩

数字の意味は? 数字だけが羅列されているデータは、そのままでは意味を把握しづらいと感じました。データを適切に加工することで、理解が深まると思います。 数値の分析法は? 数値の分析にあたっては、代表値や散らばりに注目する必要があります。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、それぞれの状況に合わせた選択が求められると感じました。 年齢層の傾向は? また、コミュニティ内の受講生の年齢層を考える場合、単純平均だけでなく、中央値や散らばりも分析することで、どの層にアプローチすべきか、またはまだ十分に届いていない層に合わせたサービス展開を検討できると考えました。 情報収集はどう? 現状、年齢データを明確に把握する手段がないため、まずはアンケートの実施や入会時のデータ取得を通じて、年齢情報の収集が必要です。さらに、退会者数についても、単なる人数の推移のグラフではなく、どの時期に退会率が高いのかといった散らばりも視覚化することで、より具体的な分析が可能になると思います。

データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

クリティカルシンキング入門

グラフ活用で資料作成が劇的に変わる!

グラフ作成の要点は? グラフ化による情報の伝わりやすさの向上は非常に大きいと感じています。どのような種類のグラフであっても、適切な形で分析されたものを作成することが重要です。具体的には、X軸やY軸の内容を適切に設定することが求められます。また、フォントや色、下線などの要素も伝達力を高めるために工夫する必要があります。 プレゼン資料の工夫は? 特に、パワーポイントを用いたセミナーのプレゼン資料の作成や、製品企画、売上分析を行う際の説明資料では、グラフなどを活用した説明が効果的です。市場分析や現状のビジネス分析においても、手元の数字を視覚化することには大きな意義があります。このようにして資料を作成する際には、なるべく数値だけでなく、その数値の意味をグラフで説明することを意識しています。 確認と改善はどう? 最後に、作成したグラフが適切かどうかを確認するため、講座で学んだ情報と照らし合わせることが必要です。また、他の人のレビューを通じて資料の伝わりやすさを確認し、改善を図ることも重要です。

戦略思考入門

フレームワーク活用で深まる思考力

フレームワークの意味は? フレームワークの基本やその使い方、そしてそれらの意味を理解することで、物事を深く考える力を得ることができました。この知識を実際の状況に当てはめながら確認することで、さらに理解が深まりました。しかし、現在の仕事を進める中で、これまでの準備段階で足りない部分が多く、組織として多くの課題が存在することを再認識しました。これを機に、チームを深く理解し、より良い方向に進ませる努力をしようと考えています。 競合情報はどう集める? 競合の情報をどのように手に入れるかが課題であり、これは分析が難しい点でもあります。ただ、今まで教わったことの多くを実践していないことにも気づいたため、まずは学んだことをしっかりと実行することを第一のステップとします。 どこに注力する? 具体的には、5フォース分析と自分の業務フローを確認し、チーム全体の流れを再確認することで、自分が注力すべきポイントをしっかり考えたいと思います。これに役立つ多くの方法を学べたことは非常に大きな収穫です。

データ・アナリティクス入門

目的再確認で磨く鋭い分析

計画の反省点は? これまで計画的な勉強をせずに分析業務を進めてきましたが、これまでの経験を体系的に整理できたと感じています。 比較検討する意味は? 特に印象に残ったのは、目的と比較対象を再確認することで、分析の内容がより鋭くなった点です。どの手法や見せ方を選ぶかは、結論を導き出しほかの人に共有する上で重要であり、データに応じた適切な手法の選択が求められます。 共有の大切さは? 今後は、何を目指し何と比較するのかを具体的かつ明確にし、チーム内でしっかりと共有することを徹底していきたいと考えています。これにより、分析結果がより精度の高い仮説検証に繋がり、プロセス全体の質が向上すると思います。 挑戦の意義は? 具体的には、フォローアップや分析の都度、目的を直接再確認すること、目指すべきものと比較対象をはっきりさせた上で最初にチームと確認し合うプロセスを重視しています。また、習得した分析手法を活かし、普段あまり使用しなかった方法にも意識的に挑戦するよう心掛けています。

データ・アナリティクス入門

平均に隠されたデータの真実

代表値の意味は? データを理解する際、代表値の考え方が基本であると学びました。代表値には単純平均、加重平均、幾何平均、中央値などがあり、たとえ二つの集団で平均値が同じでも、ばらつきの度合いによって集団の実態は大きく異なることがわかります。ばらつきは標準偏差という指標で表され、また、グラフを用いてデータを視覚化することで、説得力が増すことも学びました。 報告書のポイントは? 報告書にデータやグラフを用いる際には、より意味のある情報を見出すことが重要です。平均値だけでは集団の性質を十分に理解できないため、ばらつきなど他の要素も加味し、「本当にそう言えるのか?」と多角的に考える必要があると感じました。 分析目的は何? そのため、まず何のための分析なのか、その目的を明確にすることが大切です。次に、必要なデータを特定し、信頼できる情報源から取得すること。そして、代表値や標準偏差をどう活用すれば集団の性質が理解できるのかを考慮しながら、データを適切に扱いたいと思います。

データ・アナリティクス入門

比較で見つける日常データの宝石

データの隠れた意味は? 「分析は比較なり」という講師の言葉に、これまでの自分のデータに対する見方を改める衝撃を受けました。単に手元にあるデータだけでは、平均値や統計情報といった基準を算出することができず、その中に秘められた情報を読み解く重要性を再認識する機会となりました。 数字以外も活かせる? また、データ分析と言えば数字を思い描くことが多いですが、文字列などで表現される資料もまたデータであると教わりました。間接部門で働く中で、これまでデータに対して多少なりとも距離を感じていた私にとって、まずは日常の中で身近に存在するデータを取りこぼさず活用することの必要性を実感しました。 管理と復習は十分? 具体的には、毎日、毎週、毎月の使用単位で見落としがないかデータをチェックすること、一元的な保管場所を確保してデータの集計状況を整えることが挙げられます。迷ったときは今回の学びを振り返り、復習を繰り返すことで「データとは何か」を体で覚えていくことが大切だと感じました。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

クリティカルシンキング入門

小さな問い、大きな発見

問題はどう浮かび上がる? 要素を分解して検討することで、解決すべき問題を明確にすることが可能です。データを提示する際にも、意図を持って伝えなければ単なる数字の羅列に過ぎず、その意味は薄れてしまいます。また、問題解決の方向性を定める際は、ただアイデアを出すのではなく、まず適切な問いを立てることが重要です。問いの立て方次第で、最終的な成功確度が大きく変わるため、時間と労力を問いの検討に注ぐべきだと感じます。 現場でどう対策する? 具体的な業務の現場では、所属する広告グループでの広告施策の検討において、この考え方が非常に役立ちました。たとえば、ブランドの健康状態について、どのような問題や課題が存在するのかを細かく分析し、その上で広告という刺激がどのような対策となり得るかを論理的に整理することが求められます。ブランドの課題や背景を正確に把握し、対策の方向性や具体的な手段を順序立てて考えることで、実施する施策が本当に課題解決に寄与するかどうかを見極めることができるのです。

「分析 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right