クリティカルシンキング入門

MECEな思考でプロジェクト運営が効率化された実例

物事の理解を深めるには? 物事や起きている事象を正しく理解するためには、様々な切り口で分解し、特徴的な傾向を見つけ出すことが重要だと実感しました。 MECEな切り口を考える意味は? まず、切り口はできるだけ多く考えることが大切です。物事の特徴を見つけ出すためには、様々な切り口での分解が必要です。これを効率良く進めるためには、MECEな切り口を考えることが重要です。もし切り口にモレやダブりがあると、要素同士が重複してしまい、分解しても特徴をうまく捉えられません。MECEであれば要素同士が独立しており、特徴を特定しやすくなります(原因解析であればうまく原因を特定できる)。 どのような切り口が効果的? MECEな切り口には、主に3パターンあります。「層別分解」、「変数分解」、そして「プロセス分解」です。全体を定義したうえで、これらを入口に考えていくと効率良くMECEな切り口を見つけられます。 分解結果をどう活用する? また、物事に影響を与えそうな原因の仮説を持ち、どのような単位で分解すると意味がありそうか考えることも重要です。目的に沿う切り口だけを仕分けて選別します。数値から特徴を見つけるには、分解した結果をグラフによって視覚化することが有効です。視覚化することで、全体を俯瞰し傾向を見つけやすくなり、効率化にも非常に有効です。 エンジニアに必要なスキルは? 数値を分析して物事を正しく捉えるという仕事は、開発業務に従事するエンジニアとして機会があります。今回の学習を踏まえて振り返ってみると、「変数分解」というアプローチを良く取っていたように感じます。この他にも「層別分解」や「プロセス分解」といったアプローチがあることを学んだので、これらのアプローチから新しい切り口を考えるのは有効だと思います。 プロジェクト運営での活かし方は? また、数値分析というわけではありませんが、物事をMECEな切り口で分解して捉えるということ自体が、自身の仕事で役立つと感じています。今では開発業務における数値分析という仕事は減り、プロジェクト運営の仕事が増えています。プロジェクトの方針・方向性を示し運営していくことが必要とされており、MECEな切り口で物事を捉えて説明するということは有効だと考えます。 実践すべきステップは何か? プロジェクトが担当する範囲を明確にし、その中でやるべきことをさらに分解して示していく必要があるので、MECEな切り口で分解していくことを意識したいと思います。MECEの3つのアプローチを入口に、切り口を出していくことを意識して実践していこうと思います。

リーダーシップ・キャリアビジョン入門

自分改革!挑戦と成長の軌跡

相手のやる気はどう引き出す? 仕事を依頼する際は、相手がやる気になれるよう、相手の関心やモチベーションについて事前に把握し、任せる仕事がどのように自身の成長や目標実現に役立つかを明確に伝えることが大切です。大きなプロジェクトの一部を依頼する場合でも、その作業が全体の中でどのような位置づけにあるのか、目的が何であるのか、そして仕事を通してどのようなスキルが身につくのかを説明し、意味付けをするよう努めます。また、仕事の成果がどのように活かされたかというフィードバックや、プロジェクト終了時の感謝や労いの言葉は、相手にとって大きな励みとなります。 任せた後はどう見守る? 仕事を任せた後は、責任感を持たせる一方で、丸投げにせず定期的に進捗や成果をフォローすることが求められます。問題が発生した際は、まず事態の収拾に努め、その後、なぜ問題が起こったのか、どのような行動が原因となったのかを多角的に分析します。この分析では「誰が」ではなく、「何が」「どのように」うまくいかなかったのかに着目し、具体的な改善策を一緒に考えることが重要です。振り返りを定期的に実施し、出来たこと・できなかったことの両面を本人自らの言葉で語ってもらい、次に活かせる気づきを得る機会とします。 リーダー経験はどう育つ? 部署MBOプロジェクトにおいては、4~8年目のスタッフにリーダー経験を積んでもらうことが目的です。グループリーダーが主体となり、計画の立案から実行、評価、修正までを自ら行うことで、計画を自分の問題として捉え、仕事に対する責任を持つよう促します。定期的な振り返りの場では、計画通りに進んでいるか、逸脱している部分はないかを本人の言葉で確認し、必要に応じてどのように修正すべきかを一緒に考えます。また、経験を積んだスタッフをサポートメンバーとして配置し、相互に振り返りを行うことで、全体の成長を支援しています。 他部署連携はどう築く? 一方、部署横断長期計画では、9年以上の経験を持つスタッフが他部署との協働プログラムに参加し、モチベーション向上を図っています。参加メンバーには、短い時間でも構わないので、他部署での経験や困難、工夫した点について語ってもらい、そこで感じたことや必要なサポートを共有してもらいます。これにより、相手が大切にしている考えや、どんな環境で力を発揮できるかを理解し、衛生要因や動機づけに基づいて、必要なインセンティブや支援の方法を考えます。普段の業務での様子や他者との関わり方を観察することで、一人ひとりの目標やモチベーションの源泉を見極め、次回以降の活動に活かせるようサポート体制を整えることも重要です。

戦略思考入門

戦略的思考で未来を切り拓く

戦略的思考とは何? 『戦略的思考』とは、適切な目標を設定し、現在地から目標まで最短・最速で到達するための道筋を描き、それを実行することを意味します。この思考方法は、効果的な意思決定と行動を支えるものです。 現状と目標は? まず最初に、現在の位置を明確にし、目標をはっきりと定めます。多角的な視点、すなわち鳥の目、虫の目、魚の目、コウモリの目を駆使して状況を把握し、短期から長期にわたる視野で計画を立てます。このプロセスでは、計画的な戦略だけでなく、創発的な戦略も重要です。この創発的戦略を誤解して目の前の課題を逃れないよう、慎重に目標設定を行うことが求められます。 行動の取捨選択は? 次に、「やること」と「やらないこと」の整理が必要です。これには、必要なことと不必要なことを明確にする棚卸しが含まれます。最初のステップが確立されていないと、具体的な行動に誤りが生じる可能性があるため、注意が必要です。この段階で、個々の選択には細かい要素(what, where, why, how)が存在するため、言語化できるレベルまで熟考します。この過程は特に現代の変化の中で重要であり、自分自身も課題として意識しています。 自分の強みは? さらに、強みと弱みを分析し、独自の強みを見つけ、それを伸ばしていくことが求められます。単なる感覚ではなく、戦略的な筋道を立てて強みや独自性を導き出せるようになりたいものです。強みは時と状況に応じて変わる可能性があるため、戦略的に強みを活用できることが理想です。 自部署の貢献は? 現在、新しく立ち上がった部署で働く中で、大まかな方向性はあるものの、確固たる計画がないため、目先の課題に追われる現状があります。そのため、与えられた戦略にただ従うのではなく、全社の理念や明確な数値目標をもとに、自部署がどのように貢献できるかを自主的に考えることが重要であると感じます。 方針はどう理解? 具体的には、まず全社の方針を正しく理解し、自分自身で深く考えることから始めます。上司や同僚からの情報を参考に、なぜその方針が立てられたのか、どの方向を目指しているのかを掘り下げます。次に、その理解をもとに自部署のあり方や貢献の方法、どのような数値目標を設定し成果に結びつけるべきかを考えます。 どう成果を出す? これらを考慮しつつ、部課長クラスへの提案や新たな業務の提案、半期ごとの目標設定などを行っていくことで、最終的には成果に結びつけられると考えます。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

クリティカルシンキング入門

思考の枠を広げる5週間の旅

クリティカルシンキングの重要性とは? クリティカルシンキングとは、物事を適切な方法で適切なレベルまで考えることを意味します。この原点に立ち返るために、受講当初の設問を振り返りました。当初、授業を受ける際には思考の制約や偏りを認識していませんでしたが、5週間の講座を終えてみると、自分の認識に大きな変化があったことを実感しています。 疑問が生まれる瞬間 新たなケーススタディを通じて、「本当に?」「なぜ?」「なんで?」という疑問が最初に浮かんだのは、今回の受講内容による学びの成果だと感じました。途中のグループワークでは、異なる考えを持つメンバーとディスカッションを行い、さまざまな視点や主張に触れることで大いに刺激を受けました。あるケーススタディでは、自分の発想が及ばなかった人材マネジメントやファイナンスに関する意見を聞き、新たな気づきを得ました。 業務効率化への影響は? 現在の業務では、ルーティン化した通常業務とフローが完了していない業務が混在しています。多様なミーティングや資料作成、プレゼンなどの機会がありますが、主として経理、総務、購買、広告販促などのバックオフィス業務が中心です。これらの業務全般において、クリティカルシンキングの思考方法は必要不可欠であり、業務の効率化や高品質化に繋がると感じています。 他者との協働はどう活かす? 加えて、同僚、上司、営業部門スタッフとの連携といった他者との協働が日常的に行われています。相手のバイアスも考慮し、認識の齟齬が生まれないように効率的に業務を遂行するために、クリティカルシンキングの学びを活かしています。 実践例から学ぶポイントは? 以下の点を常に意識しています: - 目的を常に意識する - 自他の思考の癖を意識する - 本当にそれでいいのかと常に問い続ける 具体的な実践例として、以下のような取り組みをしています: - ミーティングのファシリテーターを務める前に、各議題に対して提案者とともにイシューを特定し、その認識を共有する。 - 自身の部署に対する意見・要望をヒアリングし、その結果をクリティカルシンキングを用いて分析し、自らの主張と根拠を導き出して文章やスライドを作成し、課内に共有する。 - 自身の受け持っている業務を虚構にしないようにし、他者に引き継ぎやすくするために、現状のフローが適切かどうかイシューを特定し、最適な業務内容を作成して手順書を作成する。

戦略思考入門

競争から抜け出す差別化戦略のヒント

誰に差別化すべき? 差別化について考える際、「誰に対して差別化を行うのか」を明確にすることが重要です。多くの人が、「差別化 = 競合他社との差別化」と考えがちですが、ビジネスにおける戦略は単なる競合への対抗ではなく、顧客に自社を選んでもらうためのものである必要があります。そのため、自社のターゲット層をしっかりと特定し、その層に響く差別化の施策を考える必要があります。 他業界も見るべき? 差別化の施策を考える際には、他業界にも目を向けることが大切です。つい自社と競合他社だけにフォーカスしがちですが、異業種の企業も顧客の選択肢となることがあります。そのため、業界を超えた競合を把握し、差別化に取り組むことが求められます。 施策は実行可能? また、施策の実現可能性と模倣困難性も重視すべきです。どれだけ優れたアイディアでも、企業のリソースやスキルで実現できなければ意味がありません。また、簡単に真似されてしまうような施策では効果が薄いです。そのため、自社で実行可能であり、かつ他社が容易に真似できない施策を考え続けることが重要です。 戦略の見直しは? 我々の会社は、かつて業界内で優位性を保っていましたが、競合製品の普及や低価格化の流れによってその優位性が失われつつあります。VRIO分析を行った結果、競争劣位か競争均衡のレベルに留まっていることが分かり、新たな戦略を考える必要があります。社内では、製品開発のアイディアを全社員から募るシステムを活用して、競合他社の製品情報や顧客のニーズを把握し、差別化のアイディアを積極的に提案していきたいと考えています。 競合はどう捉える? さらに、私が携わるオウンドメディアの運営でも、多様な企業が同じテーマでメディアを展開しています。そのため、競合となり得るメディアをしっかりリサーチし、差別化を図る必要があります。特に、顧客の疑問を解決する専門知識や、実際の製品使用による課題解決の事例紹介を強みとして生かしていきたいです。 常に考え続ける? 差別化のアイディアを即座に出すのは難しいと感じますが、考え続け、アウトプットを続けることでスキルは育つと信じています。小さなアイディアでも思いついたら積極的に発言し、フィードバックを得ることでより良い施策にしていきたいと考えています。他人と意見を交わしながら考えることを習慣化し、個人の成長と共に会社の成長に貢献していきます。

データ・アナリティクス入門

分析に魔法なし!日常に隠れたヒントを探せ

分析とは何を理解するべき? 分析とは何かについて理解しているつもりではあったが、それを言語化することが出来ていないことに気づかされた。また、ライブ授業や動画学習で言及される内容は日常的に行っていることでも、その目的や意図を明確にすることの重要性を改めて認識した。 ライブ授業での学びとは? 【ライブ授業】 分析の基本的な考え方として、「具体的に」かつ「はっきり」とさせることで意思決定に役立てることが非常に印象的だった。これは当たり前のことながら、この理解により方向性や手法を誤らないための指針として機能することがわかった。さらに、棒グラフについては、縦よりも横の方が差を認識しやすいというテクニックが参考になった。分析が第三者に理解され、納得してもらうことが目的であるため、このようなテクニックは非常に有意義であると感じた。 動画学習で気づいたことは? 【動画学習】 「Apple to Apple」のように、分析には条件が等しいものを比較することが重要である一方、世間には意図的に「Apple to Orange」を行っている情報も存在する。この講義では、提示された資料の分析目的や意図を意識することの重要性について学んだ。また、生存者バイアスの考え方も参考になった。目に見えるデータに偏りがちだが、隠れたデータが示す意味について仮説を立てて考えることが重要であると学び、業務に生かしたいと思った。 後輩指導にどう活かす? 後輩の指導や同僚の資料作成の際には、この講義で学んだ考えを意識して取り組みたい。その分析の目的は何なのか、比較対象は正しいのか、隠れたデータが何を意味しているのか。与えられた情報だけでなく、背景を含めて俯瞰する視点を持ちたい。また、自分の行う分析や提案に際しても同様に、目的を持ち、仮説を立て、対象を選定し、隠れた情報に注意を向けることを意識する。 高精度な需要予測を目指すには? 私の担当する製品はSKUが非常に多く、その需要は季節や景気、エンドユーザーの意向によって大きく左右される。また、競合他社の動向にも影響を受け、需要予測が難しい。これまでは自部署の過去データのみを参考に需要予測と予算を立案していたが、これは客観性に欠けていた。今後は業界実績やその時のトピックスも取り入れることで、生存者バイアスを避け、より精度の高い分析を行いたいと考えている。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

「分析 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right